Skip to main content

Advertisement

Log in

Clinical Applications of Echo Strain Imaging: a Current Appraisal

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

This article reviews recent advances in echocardiographic strain imaging, particularly in its ability to prognosticate in cardiovascular outcomes and impact clinical decision making.

Recent findings

Strain has been proposed as a sensitive tool in detecting early ventricular dysfunction. Left ventricular global longitudinal strain (LV-GLS) detects subtle changes in myocardial function, often not quantifiable by ejection fraction alone. Thus, LV-GLS provides the opportunity for early decision-making, and the implementation of more effective treatments, improving outcomes in a variety of diseases such as valvular heart diseases, cardio-oncology, ischemic heart disease, cardiomyopathies, heart transplantation, and pericardial diseases and cardiomyopathies.

Summary

Strain is a promising tool for the early detection of myocardial dysfunction in patients with preserved left ventricular ejection fraction and can prognosticate long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69. https://doi.org/10.1016/j.echo.2010.02.015.

    Article  PubMed  Google Scholar 

  2. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91. https://doi.org/10.1016/j.echo.2012.10.008.

    Article  PubMed  Google Scholar 

  3. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84. https://doi.org/10.1056/nejm200004133421502.

    Article  CAS  PubMed  Google Scholar 

  4. Thavendiranathan P, Poulin F, Lim K-D, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25, Part A):2751–68. https://doi.org/10.1016/j.jacc.2014.01.073.

    Article  PubMed  Google Scholar 

  5. Kwon DH, Setser RM, Thamilarasan M, Popovic ZV, Smedira NG, Schoenhagen P, et al. Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Heart. 2008;94(10):1295–301.

    Article  CAS  Google Scholar 

  6. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8. https://doi.org/10.1016/j.echo.2013.02.008.

    Article  PubMed  Google Scholar 

  7. Mousavi N, Tan TC, Ali M, Halpern EF, Wang L, Scherrer-Crosbie M. Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50–59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging. 2015;16(9):977–84. https://doi.org/10.1093/ehjci/jev113.

    Article  PubMed  Google Scholar 

  8. •• Ali MT, Yucel E, Bouras S, Wang L, Fei H-W, Halpern EF, et al. Myocardial strain is associated with adverse clinical cardiac events in patients treated with anthracyclines. J Am Soc Echocardiogr. 2016;29(6):522–7.e3. https://doi.org/10.1016/j.echo.2016.02.018 This study evaluated the usefulness of LV-GLS to stratify patients at high risk of cardiotoxicity after chemotherapy.

    Article  PubMed  Google Scholar 

  9. Florescu M, Magda LS, Enescu OA, Jinga D, Vinereanu D. Early detection of epirubicin-induced cardiotoxicity in patients with breast cancer. J Am Soc Echocardiogr. 2014;27(1):83–92. https://doi.org/10.1016/j.echo.2013.10.008.

    Article  PubMed  Google Scholar 

  10. Sawaya H, Sebag Igal A, Plana Juan C, Januzzi James L, Ky B, Tan Timothy C, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603. https://doi.org/10.1161/circimaging.112.973321.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ho E, Brown A, Barrett P, Morgan RB, King G, Kennedy MJ, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart. 2010;96(9):701–7. https://doi.org/10.1136/hrt.2009.173997.

    Article  CAS  PubMed  Google Scholar 

  12. Rhea IB, Uppuluri S, Sawada S, Schneider BP, Feigenbaum H. Incremental prognostic value of echocardiographic strain and its association with mortality in cancer patients. J Am Soc Echocardiogr. 2015;28(6):667–73. https://doi.org/10.1016/j.echo.2015.02.006.

    Article  PubMed  Google Scholar 

  13. Handa N, McGregor CGA, Danielson GK, Daly RC, Dearani JA, Mullany CJ, et al. Valvular heart operation in patients with previous mediastinal radiation therapy. Ann Thorac Surg. 2001;71(6):1880–4. https://doi.org/10.1016/S0003-4975(01)02588-7.

    Article  CAS  PubMed  Google Scholar 

  14. Chirakarnjanakorn S, Popović ZB, Wu W, Masri A, Smedira NG, Lytle BW, et al. Impact of long-axis function on cardiac surgical outcomes in patients with radiation-associated heart disease. J Thorac Cardiovasc Surg. 2015;149(6):1643–51.e2. https://doi.org/10.1016/j.jtcvs.2015.01.045.

    Article  PubMed  Google Scholar 

  15. Sperry BW, Vranian MN, Tower-Rader A, Hachamovitch R, Hanna M, Brunken R, et al. Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality. JACC Cardiovasc Imaging. 2018;11(2, Part 1):234–42. https://doi.org/10.1016/j.jcmg.2017.06.020.

    Article  PubMed  Google Scholar 

  16. Koyama J, Ray-Sequin Patricia A, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation. 2003;107(19):2446–52. https://doi.org/10.1161/01.cir.0000068313.67758.4f.

    Article  PubMed  Google Scholar 

  17. •• Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442. https://doi.org/10.1136/heartjnl-2012-302353 This study described regional patterns in longitudinal strain cardiac amyloidosis and differentiate it from other causes of increased left ventricular wall thickness.

    Article  PubMed  Google Scholar 

  18. Dungu JN, Anderson LJ, Whelan CJ, Hawkins PN. Cardiac transthyretin amyloidosis. Heart. 2012;98(21):1546–54. https://doi.org/10.1136/heartjnl-2012-301924.

    Article  PubMed  Google Scholar 

  19. Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16. https://doi.org/10.1056/NEJMoa1805689.

    Article  CAS  PubMed  Google Scholar 

  20. Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart. 2016;102(10):748–54. https://doi.org/10.1136/heartjnl-2015-308657.

    Article  PubMed  Google Scholar 

  21. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol. 2012;60(12):1067–76. https://doi.org/10.1016/j.jacc.2012.04.043.

    Article  PubMed  Google Scholar 

  22. • Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY. Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: a systematic review of existing literature. JACC Cardiovasc Imaging. 2018. https://doi.org/10.1016/j.jcmg.2018.07.016 This is a systematic review with the most complete analysis on the value prognosis of LV-GLS in patients with HCM in recent years.

    PubMed  Google Scholar 

  23. Almaas VM, Haugaa KH, Strøm EH, Scott H, Smith H-J, Dahl CP, et al. Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart. 2014;100(8):631–8. https://doi.org/10.1136/heartjnl-2013-304923.

    Article  PubMed  Google Scholar 

  24. Tower-Rader A, Betancor J, Popovic ZB, Sato K, Thamilarasan M, Smedira NG, et al. Incremental prognostic utility of left ventricular global longitudinal strain in hypertrophic obstructive cardiomyopathy patients and preserved left ventricular ejection fraction. J Am Heart Assoc. 2017;6(10):e006514. https://doi.org/10.1161/jaha.117.006514.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;70(2):252–89. https://doi.org/10.1016/j.jacc.2017.03.011.

    Article  PubMed  Google Scholar 

  26. Delgado V, Tops LF, van Bommel RJ, van der Kley F, Marsan NA, Klautz RJ, et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur Heart J. 2009;30(24):3037–47. https://doi.org/10.1093/eurheartj/ehp351.

    Article  PubMed  Google Scholar 

  27. Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Aronson D, et al. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol. 2011;107(7):1052–7. https://doi.org/10.1016/j.amjcard.2010.11.032.

    Article  PubMed  Google Scholar 

  28. Kusunose K, Goodman A, Parikh R, Barr T, Agarwal S, Popovic Zoran B, et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circul Cardiovasc Imaging. 2014;7(6):938–45. https://doi.org/10.1161/circimaging.114.002041.

    Article  Google Scholar 

  29. Huded CP, Masri A, Kusunose K, Goodman AL, Grimm RA, Gillinov AM, et al. Outcomes in asymptomatic severe aortic stenosis with preserved ejection fraction undergoing rest and treadmill stress echocardiography. J Am Heart Assoc. 2018;7(8):e007880. https://doi.org/10.1161/jaha.117.007880.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Magne J, Cosyns B, Popescu BA, Carstensen HG, Dahl J, Desai MY, et al. Distribution and prognostic significance of left ventricular global longitudinal strain in asymptomatic significant aortic stenosis: an individual participant data meta-analysis. JACC Cardiovasc Imaging. 2019;12(1):84–92. https://doi.org/10.1016/j.jcmg.2018.11.005.

    Article  PubMed  Google Scholar 

  31. Huded CP, Kusunose K, Shahid F, Goodman AL, Alashi A, Grimm RA, et al. Novel echocardiographic parameters in patients with aortic stenosis and preserved left ventricular systolic function undergoing surgical aortic valve replacement. Am J Cardiol. 2018;122(2):284–93. https://doi.org/10.1016/j.amjcard.2018.03.359.

    Article  PubMed  Google Scholar 

  32. Kafa R, Kusunose K, Goodman AL, Svensson LG, Sabik JF, Griffin BP, et al. Association of abnormal postoperative left ventricular global longitudinal strain with outcomes in severe aortic stenosis following aortic valve replacement LV global longitudinal strain values after aortic value replacement letters. JAMA Cardiol. 2016;1(4):494–6. https://doi.org/10.1001/jamacardio.2016.1132.

    Article  PubMed  Google Scholar 

  33. Dujardin Karl S, Enriquez-Sarano M, Schaff Hartzell V, Bailey Kent R, Seward James B, Tajik AJ. Mortality and morbidity of aortic regurgitation in clinical practice. Circulation. 1999;99(14):1851–7. https://doi.org/10.1161/01.cir.99.14.1851.

    Article  Google Scholar 

  34. Alashi A, Mentias A, Abdallah A, Feng K, Gillinov AM, Rodriguez LL, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction. JACC Cardiovasc Imaging. 2018;11(5):673–82. https://doi.org/10.1016/j.jcmg.2017.02.016.

    Article  PubMed  Google Scholar 

  35. Alashi A, Khullar T, Mentias A, Gillinov AM, Roselli EE, Svensson LG, et al. Long-term outcomes after aortic valve surgery in patients with asymptomatic chronic aortic regurgitation and preserved LVEF: impact of baseline and follow-up global longitudinal strain. JACC Cardiovasc Imaging. 2019. https://doi.org/10.1016/j.jcmg.2018.12.021.

  36. Mentias A, Naji P, Gillinov AM, Rodriguez LL, Reed G, Mihaljevic T, et al. Strain echocardiography and functional capacity in asymptomatic primary mitral regurgitation with preserved ejection fraction. J Am Coll Cardiol. 2016;68(18):1974–86. https://doi.org/10.1016/j.jacc.2016.08.030.

    Article  PubMed  Google Scholar 

  37. Mentias A, Alashi A, Naji P, Gillinov AM, Rodriguez LL, Mihaljevic T, et al. Exercise capacity in asymptomatic patients with significant primary mitral regurgitation: independent effect of global longitudinal left ventricular strain. Cardiovasc Diagn Ther. 2018;8(4):460–8.

    Article  Google Scholar 

  38. Alashi A, Mentias A, Patel K, Gillinov AM, Sabik Joseph F, Popović Zoran B, et al. Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery. Circ Cardiovasc Imaging. 2016;9(7):e004451. https://doi.org/10.1161/circimaging.115.004451.

    Article  PubMed  Google Scholar 

  39. Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013;61(23):2365–73. https://doi.org/10.1016/j.jacc.2013.02.061.

    Article  PubMed  Google Scholar 

  40. Antończyk K, Niklewski T, Antończyk R, Zakliczyński M, Zembala M, Kukulski T. Evaluation of the graft mechanical function using speckle-tracking echocardiography during the first year after orthotropic heart transplantation. Ann Transplant. 2018;23:554–60. https://doi.org/10.12659/aot.909359.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eleid MF, Caracciolo G, Cho EJ, Scott RL, Steidley DE, Wilansky S, et al. Natural history of left ventricular mechanics in transplanted hearts: relationships with clinical variables and genetic expression profiles of allograft rejection. JACC Cardiovasc Imaging. 2010;3(10):989–1000. https://doi.org/10.1016/j.jcmg.2010.07.009.

    Article  PubMed  Google Scholar 

  42. Sade LE, Hazirolan T, Kozan H, Ozdemir H, Hayran M, Eroglu S, et al. T1 mapping by cardiac magnetic resonance and multidimensional speckle-tracking strain by echocardiography for the detection of acute cellular rejection in cardiac allograft recipients. JACC Cardiovasc Imaging. 2018;12:1601–14. https://doi.org/10.1016/j.jcmg.2018.02.022.

    Article  PubMed  Google Scholar 

  43. Barakat AF, Sperry BW, Starling RC, Mentias A, Popovic ZB, Griffin BP, et al. Prognostic utility of right ventricular free wall strain in low risk patients after orthotopic heart transplantation. Am J Cardiol. 2017;119(11):1890–6. https://doi.org/10.1016/j.amjcard.2017.03.003.

    Article  PubMed  Google Scholar 

  44. Mahmoud A, Bansal M, Sengupta PP. New cardiac imaging algorithms to diagnose constrictive pericarditis versus restrictive cardiomyopathy. Curr Cardiol Rep. 2017;19(5):43. https://doi.org/10.1007/s11886-017-0851-0.

    Article  PubMed  Google Scholar 

  45. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr. 2015;28(10):1171–81.e2. https://doi.org/10.1016/j.echo.2015.06.011.

    Article  PubMed  Google Scholar 

  46. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  PubMed  Google Scholar 

  47. Voigt J-U, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28(2):183–93. https://doi.org/10.1016/j.echo.2014.11.003.

    Article  PubMed  Google Scholar 

  48. Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011;28(9):978–82. https://doi.org/10.1111/j.1540-8175.2011.01476.x.

    Article  PubMed  Google Scholar 

  49. Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circ J. 2012;76(11):2623–32. https://doi.org/10.1253/circj.CJ-12-0264.

    Article  PubMed  Google Scholar 

  50. Cifra B, Mertens L, Mirkhani M, Slorach C, Hui W, Manlhiot C, et al. Systolic and diastolic myocardial response to exercise in a healthy pediatric cohort. J Am Soc Echocardiogr. 2016;29(7):648–54. https://doi.org/10.1016/j.echo.2016.02.015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Desai acknowledges Haslam family endowed chair in cardiovascular medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind Y. Desai MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fava, A.M., Meredith, D. & Desai, M.Y. Clinical Applications of Echo Strain Imaging: a Current Appraisal. Curr Treat Options Cardio Med 21, 50 (2019). https://doi.org/10.1007/s11936-019-0761-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0761-0

Keywords

Navigation