Skip to main content

Advertisement

Log in

Evaluation and Management of Cardiac Tumors

  • Cardio-oncology (M Fradley, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Our purpose is to discuss the importance of multimodality imaging in the assessment of cardiac tumors and management. We have compiled a recent review of the scientific literature and embedded our clinical pathways and recommendations based on data and clinical experience.

Recent findings

The use of contrast echocardiography in the assessment of cardiac masses has been shown to be helpful in distinguishing tumor from thrombus. Deformation imaging of cardiac tumors has been shown to differentiate better rhabdomyomas from fibromas in pediatric patients. Cardiac MRI (CMR) appears to be helpful in determining whether cardiac tumors are benign or malignant by identifying presence of infiltration, uptake of contrast in first pass perfusion and gadolinium enhancement. Patients with evidence of cardiac metastases by CMR show similar survival to stage IV cancer without cardiac metastases. In our institution, we use a standardized approach for the evaluation of cardiac masses, which includes multimodality imaging in the appropriate clinical context. The autotransplantation surgical technique has shown some promise in improving survival in patients with primary cardiac sarcomas. In our institution, we do not routinely recommend anticoagulation for “tumor-thrombus” in renal cell carcinoma due to risk of bleeding from primary tumor.

Summary

Cardiac masses are often found incidentally, but sometimes can present with cardiovascular symptoms due to obstruction and valvular dysfunction, which may prompt imaging. It is important to determine whether the mass is a normal variant, imaging artifact, vegetation, thrombus, or tumor. Transthoracic echocardiography is ideally suited to be the initial imaging modality because of the portability, wide availability, lack of radiation, and relatively low cost. The gold standard cardiac imaging technique to distinguish tumor from thrombus is contrast enhanced CMR with prolonged inversion time. Advantages of CMR when compared to echocardiography regarding characterization of cardiac tumors are as follows: larger field of view, better spatial resolution, better tissue characterization, lack of attenuation, and ability to image at any prescribed plane. Primary and secondary cardiac tumors have particular characteristics in echocardiography and CMR. Imaging of cardiac tumors plays an important role in establishing a diagnosis and in planning management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Hudzik B, et al. Malignant tumors of the heart. Cancer Epidemiol. 2015;39(5):665–72. Updated review on malignant tumors of the heart, a good reference

    Article  PubMed  Google Scholar 

  2. Butany J, et al. Cardiac tumours: diagnosis and management. Lancet Oncol. 2005;6(4):219–28.

    Article  PubMed  Google Scholar 

  3. •• Bertrand PB, et al. Fact or artifact in two-dimensional echocardiography: avoiding misdiagnosis and missed diagnosis. J Am Soc Echocardiogr. 2016;29(5):381–91. Thorough review on artifacts in echocardiography commonly seen in clinical practice

    Article  PubMed  PubMed Central  Google Scholar 

  4. Le HT, et al. Imaging Artifacts in Echocardiography. Anesth Analg. 2016;122(3):633–46.

    Article  PubMed  Google Scholar 

  5. Alam M. Pitfalls in the echocardiographic diagnosis of intracardiac and extracardiac masses. Echocardiography. 1993;10(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  6. Martin RP, et al. Clinical utility of two dimensional echocardiography in infective endocarditis. Am J Cardiol. 1980;46(3):379–85.

    Article  CAS  PubMed  Google Scholar 

  7. Kamran H, et al. Lambl’s excrescences: a case report and review of the literature. Clin Case Rep Rev. 2016;2(7):486–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jaffe W, Figueredo VM. An example of Lambl’s excrescences by transesophageal echocardiogram: a commonly misinterpreted lesion. Echocardiography. 2007;24(10):1086–9.

    Article  PubMed  Google Scholar 

  9. Tower-Rader A, Kwon D. Pericardial masses, cysts and diverticula: a comprehensive review using multimodality imaging. Prog Cardiovasc Dis. 2017;59(4):389–97.

    Article  PubMed  Google Scholar 

  10. Roberts WC. Primary and secondary neoplasms of the heart. Am J Cardiol. 1997;80(5):671–82.

    Article  CAS  PubMed  Google Scholar 

  11. Tao TY, et al. Pediatric cardiac tumors: clinical and imaging features. Radiographics. 2014;34(4):1031–46.

    Article  PubMed  Google Scholar 

  12. Shapiro LM. Cardiac tumours: diagnosis and management. Heart. 2001;85(2):218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gowda RM, et al. Cardiac papillary fibroelastoma: a comprehensive analysis of 725 cases. Am Heart J. 2003;146(3):404–10.

    Article  PubMed  Google Scholar 

  14. Bass JL, Breningstall GN, Swaiman KF. Echocardiographic incidence of cardiac rhabdomyoma in tuberous sclerosis. Am J Cardiol. 1985;55(11):1379–82.

    Article  CAS  PubMed  Google Scholar 

  15. King SJ, Smallhorn JF, Burrows PE. Epicardial lipoma: imaging findings. AJR Am J Roentgenol. 1993;160(2):261–2.

    Article  CAS  PubMed  Google Scholar 

  16. Mullen JC, et al. Right atrial lipoma. Ann Thorac Surg. 1995;59(5):1239–41.

    Article  CAS  PubMed  Google Scholar 

  17. Osranek M, et al. Echocardiographic features of pheochromocytoma of the heart. Am J Cardiol. 2003;91(5):640–3.

    Article  PubMed  Google Scholar 

  18. Araoz PA, et al. CT and MR imaging of benign primary cardiac neoplasms with echocardiographic correlation. Radiographics. 2000;20(5):1303–19.

    Article  CAS  PubMed  Google Scholar 

  19. Burke A, Johns JP, Virmani R. Hemangiomas of the heart. A clinicopathologic study of ten cases. Am J Cardiovasc Pathol. 1990;3(4):283–90.

    CAS  PubMed  Google Scholar 

  20. Kojima S, et al. Cardiac hemangioma: a report of two cases and review of the literature. Heart Vessel. 2003;18(3):153–6.

    Article  Google Scholar 

  21. Kupsky DF, et al. Echocardiographic features of cardiac angiosarcomas: the Mayo Clinic experience (1976–2013). Echocardiography. 2016;33(2):186–92.

    Article  PubMed  Google Scholar 

  22. Tighe DA, et al. Primary cardiac lymphoma. Echocardiography. 2000;17(4):345–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kurosawa T, et al. Primary malignant pericardial mesothelioma with increased serum mesothelin diagnosed by surgical pericardial resection: a case report. Mol Clin Oncol. 2016;5(5):553–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Istomin V, et al. Pericardial effusion due to primary malignant pericardial mesothelioma: a common finding but an uncommon cause. Case Rep Med. 2016;2016:4810901.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barroso AS, et al. Pericardial mesothelioma presenting as a suspected ST-elevation myocardial infarction. Rev Port Cardiol. 2017;36(4):307.e1–5.

    Google Scholar 

  26. Salcedo EE, et al. Cardiac tumors: diagnosis and management. Curr Probl Cardiol. 1992;17(2):73–137.

    Article  CAS  PubMed  Google Scholar 

  27. Wood A, et al. Metastatic malignant melanoma manifesting as an intracardiac mass. Cardiovasc Pathol. 2010;19(3):153–7.

    Article  PubMed  Google Scholar 

  28. Abdelmoneim SS, et al. Assessment of the vascularity of a left atrial mass using myocardial perfusion contrast echocardiography. Echocardiography. 2008;25(5):517–20.

    Article  PubMed  Google Scholar 

  29. Kirkpatrick JN, et al. Differential diagnosis of cardiac masses using contrast echocardiographic perfusion imaging. J Am Coll Cardiol. 2004;43(8):1412–9.

    Article  PubMed  Google Scholar 

  30. Ganame J, D’Hooge J, Mertens L. Different deformation patterns in intracardiac tumors. Eur J Echocardiogr. 2005;6(6):461–4.

    Article  PubMed  Google Scholar 

  31. Hendel RC, et al. ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol. 2006;48(7):1475–97.

    Article  PubMed  Google Scholar 

  32. Beroukhim RS, et al. Characterization of cardiac tumors in children by cardiovascular magnetic resonance imaging: a multicenter experience. J Am Coll Cardiol. 2011;58(10):1044–54.

    Article  PubMed  Google Scholar 

  33. Weinsaft JW, et al. LV thrombus detection by routine echocardiography: insights into performance characteristics using delayed enhancement CMR. JACC Cardiovasc Imaging. 2011;4(7):702–12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Abbas A, et al. Cardiac MR assessment of cardiac myxomas. Br J Radiol. 2015;88(1045):20140599.

    Article  CAS  PubMed  Google Scholar 

  35. Colin GC, et al. Cardiac myxoma imaging features and tissue characteristics at cardiovascular magnetic resonance. Int J Cardiol. 2016;202:950–1.

    Article  CAS  PubMed  Google Scholar 

  36. Rahsepar AA, et al. A papillary fibroelastoma involving aortic and pulmonary valves: findings on multimodality imaging. Ann Thorac Surg. 2017;103(1):e73–5.

    Article  PubMed  Google Scholar 

  37. •• Pazos-Lopez P, et al. Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging. 2014;7(9):896–905. Very important study that validates the usefulness of CMR in the evaluation of cardiac masses. Describes the features of malignant and benign tumors in CMR

    Article  PubMed  Google Scholar 

  38. • Lopez-Mattei J, et al. The role of cardiac MRI in cardio-oncology. Futur Cardiol. 2017;13(4):311–6. This review from our center illustrates the role of CMR in our practice

    Article  CAS  Google Scholar 

  39. Kim MP, et al. Outcomes after right-side heart sarcoma resection. Ann Thorac Surg. 2011;91(3):770–6.

    Article  PubMed  Google Scholar 

  40. •• Pun, S.C., et al.. Pattern and prognostic implications of cardiac metastases among patients with advanced systemic cancer assessed with cardiac magnetic resonance imaging. J Am Heart Assoc. 2016. 5(5). Important study that emphasize the role of CMR in diagnosing metastatic disease and its relation with staging cancer patients in certain clinical scenarios.

  41. • Lopez-Mattei, J. Chapter 9. Evaluation of a Cardiac Mass, in MD Anderson Practices in Onco-cardiology, Editor: Edward T.H. Yeh, M.D., F.A.C.C. 2016. p 29–30. This is a summary of our standardized approach of cardiac masses evaluation.

  42. Zatorska K, et al. The usefulness of magnetic resonance imaging in the diagnosis of infectious endocarditis. J Heart Valve Dis. 2015;24(6):767–75.

    PubMed  Google Scholar 

  43. Reynen K. Cardiac myxomas. N Engl J Med. 1995;333(24):1610–7.

    Article  CAS  PubMed  Google Scholar 

  44. Colucci WS, Schoen FJ, Braunwald E. Primary tumors of the heart. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. Philadelphia: W.B. Saunders Company; 1997. p. 1464–77.

    Google Scholar 

  45. Blackmon SH, Reardon MJ. Cardiac neoplasms. In: Cohn LH, editor. Cardiac surgery in the adult. New York: McGraw-Hill Medical; 2012.

    Google Scholar 

  46. Ngaage DL, et al. Surgical treatment of cardiac papillary fibroelastoma: a single center experience with eighty-eight patients. Ann Thorac Surg. 2005;80(5):1712–8.

    Article  PubMed  Google Scholar 

  47. Sun JP, et al. Clinical and echocardiographic characteristics of papillary fibroelastomas: a retrospective and prospective study in 162 patients. Circulation. 2001;103(22):2687–93.

    Article  CAS  PubMed  Google Scholar 

  48. Nir A, et al. Tuberous sclerosis and cardiac rhabdomyoma. Am J Cardiol. 1995;76(5):419–21.

    Article  CAS  PubMed  Google Scholar 

  49. Bossert T, et al. Cardiac fibroma as an inherited manifestation of nevoid basal-cell carcinoma syndrome. Tex Heart Inst J. 2006;33(1):88–90.

    PubMed  PubMed Central  Google Scholar 

  50. Neragi-Miandoab S, Kim J, Vlahakes GJ. Malignant tumours of the heart: a review of tumour type, diagnosis and therapy. Clin Oncol (R Coll Radiol). 2007;19(10):748–56.

    Article  CAS  Google Scholar 

  51. Cohen RA, et al. Mature cardiac teratoma in an adult. Cardiol Res. 2012;3(3):97–9.

    PubMed  PubMed Central  Google Scholar 

  52. Balasundaram S, Halees SA, Duran C. Mesothelioma of the atrioventricular node: first successful follow-up after excision. Eur Heart J. 1992;13(5):718–9.

    Article  CAS  PubMed  Google Scholar 

  53. Bruckner BA, Reardon MJ. Benign cardiac tumors: a review. Methodist Debakey Cardiovasc J. 2010;6(3):20–6.

    Article  PubMed  Google Scholar 

  54. Lee KJ, et al. A case of arteriovenous type cardiac hemangioma. Korean J Intern Med. 1998;13(2):123–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song JY, et al. Silent left ventricular hemangioma. Acta Cardiologica Sinica. 2013;29(6):562–4.

    PubMed  PubMed Central  Google Scholar 

  56. Simpson L, et al. Malignant primary cardiac tumors: review of a single institution experience. Cancer. 2008;112(11):2440–6.

    Article  PubMed  Google Scholar 

  57. Reardon MJ. Malignant tumor overview. Methodist Debakey Cardiovasc J. 2010;6(3):35–7.

    Article  PubMed  Google Scholar 

  58. Reardon MJ, Walkes JC, Benjamin R. Therapy insight: malignant primary cardiac tumors. Nat Clin Pract Cardiovasc Med. 2006;3(10):548–53.

    Article  PubMed  Google Scholar 

  59. Vaporciyan A, Reardon MJ. Right heart sarcomas. Methodist Debakey Cardiovasc J. 2010;6(3):44–8.

    Article  PubMed  Google Scholar 

  60. Ravi V, Benjamin RS. Systemic therapy for cardiac sarcomas. Methodist Debakey Cardiovasc J. 2010;6(3):57–60.

    Article  PubMed  Google Scholar 

  61. Leja MJ, et al. Metastatic melanoma to the intracavitary left ventricle treated using cardiac autotransplantation technique for resection. Methodist Debakey Cardiovasc J. 2011;7(4):44–6.

    Article  PubMed  Google Scholar 

  62. Rice DC, Reardon MJ. Left heart sarcomas. Methodist Debakey Cardiovasc J. 2010;6(3):49–56.

    Article  PubMed  Google Scholar 

  63. Blackmon SH, Reardon MJ. Pulmonary artery sarcoma. Methodist Debakey Cardiovasc J. 2010;6(3):38–43.

    Article  PubMed  Google Scholar 

  64. Yusuf SW, et al. Cardiac tumors in a tertiary care cancer hospital: clinical features, echocardiographic findings, treatment and outcomes. Heart Int. 2012;7(1):e4.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ceresoli GL, et al. Primary cardiac lymphoma in immunocompetent patients: diagnostic and therapeutic management. Cancer. 1997;80(8):1497–506.

    Article  CAS  PubMed  Google Scholar 

  66. Petrich A, Cho SI, Billett H. Primary cardiac lymphoma: an analysis of presentation, treatment, and outcome patterns. Cancer. 2011;117(3):581–9.

    Article  PubMed  Google Scholar 

  67. Bambury R, et al. Primary cardiac lymphoma: diagnostic tools and treatment challenges. Ir J Med Sci. 2011;180(1):271–3.

    Article  CAS  PubMed  Google Scholar 

  68. Woodruff DY, et al. The perioperative management of an inferior vena caval tumor thrombus in patients with renal cell carcinoma. Urol Oncol. 2013;31(5):517–21.

    Article  PubMed  Google Scholar 

  69. Nesbitt JC, et al. Surgical management of renal cell carcinoma with inferior vena cava tumor thrombus. Ann Thorac Surg. 1997;63(6):1592–600.

    Article  CAS  PubMed  Google Scholar 

  70. Wood, C.G., Anticoagulation for renal IVC tumor thrombus, Thompson KA, editor. 2013.

  71. Reardon MJ. Cardiac tumor issue overview. Methodist Debakey Cardiovasc J. 2010;6(3):2–3.

    Article  Google Scholar 

  72. Leja MJ, Shah DJ, Reardon MJ. Primary cardiac tumors. Tex Heart Inst J. 2011;38(3):261–2.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Lopez-Mattei MD.

Ethics declarations

Conflict of Interest

Nicolas Palaskas, Kara Thompson, Ali M. Agha, Saamir Hassan, Cezar Iliescu, Peter Kim, Jean B. Durand, and Juan C. Lopez-Mattei each declare no potential conflicts of interest. Gregory Gladish reports speaker honoraria from Bristol Myers Squibb.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardio-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palaskas, N., Thompson, K., Gladish, G. et al. Evaluation and Management of Cardiac Tumors. Curr Treat Options Cardio Med 20, 29 (2018). https://doi.org/10.1007/s11936-018-0625-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-018-0625-z

Keywords

Navigation