Cardiovascular Complications of Multiple Myeloma Treatment: Evaluation, Management, and Prevention

Cardio-oncology (M Fradley, Section Editor)
  • 331 Downloads
Part of the following topical collections:
  1. Topical Collection on Cardio-oncology

Abstract

Purpose of review

Multiple myeloma treatment regimens consist of proteasome inhibitors (bortezomib, carfilzomib, and ixazomib), immunomodulatory drugs (thalidomide, lenalidomide, and pomalidomide), and steroids. In this paper, we will review the pathophysiology and associated cardiotoxicities of the different multiple myeloma therapeutic modalities and present methods to mitigate the development of cardiovascular complications.

Recent findings

Although proteasome inhibitors and immunomodulatory drugs have led to significant improvements in oncologic outcomes, there is increasing evidence of serious cardiovascular side effects which may be exacerbated in the setting of underlying cardiovascular risk factors or disease. Cardiotoxicities include cardiomyopathy and heart failure, accelerated hypertension, arrhythmias, and both arterial and venous thromboembolism.

Summary

Given the frequency of cardiovascular risk factors in multiple myeloma patients as well as the cardiotoxicities associated with the different treatment regimens, it is essential to closely monitor these patients. Collaboration between cardiologists and oncologists is necessary to ensure patients receive optimal cancer treatment while minimizing cardiovascular risk.

Keywords

Proteasome inhibitors Immunomodulatory drugs Cardiotoxicity Cardio-oncology Multiple myeloma Carfilzomib Bortezomib Thalidomide Lenalidomide 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dae Hyun Lee declares no potential conflicts of interest.

Michael G. Fradley is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Palumbo A, Anderson K. Multiple Myeloma. N Engl J Med. 2011;364:1046–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Mitsiades CS. Therapeutic landscape of carfilzomib and other modulators of the ubiquitin-proteasome pathway. J Clin Oncol. 2015;33:782–5.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 1994;91:4082–5.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, et al. Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 2010;24:22–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343:305–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Alexanian R. High-dose glucocorticoid treatment of resistant myeloma. Ann Intern Med. 1986;105:8.PubMedCrossRefGoogle Scholar
  7. 7.
    Alexanian R, Dimopoulos MA, Delasalle K, Barlogie B. Primary dexamethasone treatment of multiple myeloma. Blood. 1992;80:887.PubMedGoogle Scholar
  8. 8.
    Li W, Cornell RF, Lenihan D, Slosky D, Jagasia M, Piazza G, et al. Cardiovascular complications of novel multiple myeloma treatments. Circulation. 2016;133:908–12.PubMedCrossRefGoogle Scholar
  9. 9.
    • Kistler KD, Kalman J, Sahni G, Murphy B, Werther W, Rajangam K, et al. Incidence and risk of cardiac events in patients with previously treated multiple myeloma versus matched patients without multiple myeloma: an observational, retrospective, cohort study. Clin Lymphoma Myeloma Leuk. 2017;17:89–96.e3. Large insurance database study demonstrating increased rates of cardiovascular disease in multiple myeloma patients compared to matched control patients.PubMedCrossRefGoogle Scholar
  10. 10.
    Falanga A, Marchetti M. Venous thromboembolism in the hematologic malignancies. J Clin Oncol. 2009;27:4848–57.PubMedCrossRefGoogle Scholar
  11. 11.
    •• Siegel D, Martin T, Nooka A, Harvey RD, Vij R, Niesvizky R, et al. Integrated safety profile of single-agent carfilzomib: experience from 526 patients enrolled in 4 phase II clinical studies. Haematologica. 2013;98:1753–61. This study provides a comprehensive assessment of carfilzomib-associated cardiotoxicity from data compiled from four phase II clinical trials.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98.PubMedCrossRefGoogle Scholar
  14. 14.
    Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol. 2004;127:165–72.PubMedCrossRefGoogle Scholar
  15. 15.
    San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359:906–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Dasanu CA. Complete heart block secondary to bortezomib use in multiple myeloma. J Oncol Pharm Pract. 2010;17:282–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Lee W-S, Kim D-H, Shin S-H, Woo S-I, Kwan J, Park K-S, et al. Complete atrioventricular block secondary to bortezomib use in multiple myeloma. Yonsei Med J. 2011;52:196.PubMedCrossRefGoogle Scholar
  18. 18.
    Diwadkar S, Patel AA, Fradley MG. Bortezomib-induced complete heart block and myocardial scar: the potential role of cardiac biomarkers in monitoring cardiotoxicity. Case Rep Cardiol. 2016;2016(3):456,287–5.Google Scholar
  19. 19.
    Orciuolo E, Buda G, Cecconi N, Galimberti S, Versari D, Cervetti G, et al. Unexpected cardiotoxicity in haematological bortezomib treated patients. Br J Haematol. 2007;138:396–7.CrossRefGoogle Scholar
  20. 20.
    Gupta A, Pandey A, Sethi S. Bortezomib-induced congestive cardiac failure in a patient with multiple myeloma. Cardiovasc Toxicol. 2011;12:184–7.CrossRefGoogle Scholar
  21. 21.
    Bockorny M, Chakravarty S, Schulman P, Bockorny B, Bona R. Severe heart failure after bortezomib treatment in a patient with multiple myeloma: a case report and review of the literature. Acta Haematol. 2012;128:244–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Takamatsu H, Yamashita T, Kotani T, Sawazaki A, Okumura H, Nakao S. Ischemic heart disease associated with bortezomib treatment combined with dexamethasone in a patient with multiple myeloma. Int J Hematol. 2010;91:903–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Honton B, Despas F, Dumonteil N, Rouvellat C, Roussel M, Carrie D, et al. Bortezomib and heart failure: case-report and review of the French Pharmacovigilance database. Fundam Clin Pharmacol. 2013;28:349–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Xiao Y, Yin J, Wei J, Shang Z. Incidence and risk of cardiotoxicity associated with bortezomib in the treatment of cancer: a systematic review and meta-analysis. Moretti C, editor. PLoS ONE. 2014;9:e87671.Google Scholar
  25. 25.
    •• Laubach JP, Moslehi JJ, Francis SA, San Miguel JF, Sonneveld P, Orlowski RZ, et al. A retrospective analysis of 3954 patients in phase 2/3 trials of bortezomib for the treatment of multiple myeloma: towards providing a benchmark for the cardiac safety profile of proteasome inhibition in multiple myeloma. Br J Haematol. 2017;178:547–60. Large retrospective analysis confirming the lack of significant cardiotoxicity with the proteasome inhibitor bortezomib.PubMedCrossRefGoogle Scholar
  26. 26.
    •• Dimopoulos MA, Moreau P, Palumbo A, Joshua D, Pour L, Hájek R, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17:27–38. The ENDEAVOR trial demonstrated improved efficacy and cancer outcomes with carfilzomib compared to bortezomib but also reported increased rates of cardiotoxicities with carfilzomib.PubMedCrossRefGoogle Scholar
  27. 27.
    Orlowski RZ, Nagler A, Sonneveld P, Bladé J, Hájek R, Spencer A, et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol. 2007;25:3892–901.PubMedCrossRefGoogle Scholar
  28. 28.
    Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M, et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 2011;12:431–40.PubMedCrossRefGoogle Scholar
  29. 29.
    Hájek R, Masszi T, Petrucci MT, Palumbo A, Rosiñol L, Nagler A, et al. A randomized phase III study of carfilzomib vs low-dose corticosteroids with optional cyclophosphamide in relapsed and refractory multiple myeloma (FOCUS). Leukemia. 2016;31:107–14.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S, et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood. 2012;120:2817–25.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vij R, Wang M, Kaufman JL, Lonial S, Jakubowiak AJ, Stewart AK, et al. An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood. 2012;119:5661–70.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Weber D, Rankin K, Gavino M, Delasalle K, Alexanian R. Thalidomide alone or with dexamethasone for previously untreated multiple myeloma. J Clin Oncol. 2003;21:16–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Carrier M, Le Gal G, Tay J, Wu C, Lee AY. Rates of venous thromboembolism in multiple myeloma patients undergoing immunomodulatory therapy with thalidomide or lenalidomide: a systematic review and meta-analysis. J Thromb Haemost. 2011;9:653–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Cavo M, Tacchetti P, Patriarca F, Petrucci MT, Pantani L, Galli M, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet. 2010;376:2075–85.PubMedCrossRefGoogle Scholar
  35. 35.
    Palumbo A, Cavo M, Bringhen S, Cavalli M, Patriarca F, Rossi D, et al. A phase III study of enoxaparin vs aspirin vs low-dose warfarin as thromboprophylaxis for newly diagnosed myeloma patients treated with thalidomide based-regimens. Blood. 2009;114:492.Google Scholar
  36. 36.
    Rosiñol L, Oriol A, Teruel AI, Hernández D, López-Jiménez J, de la Rubia J, et al. Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood. 2012;120:1589–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372:142–52.PubMedCrossRefGoogle Scholar
  38. 38.
    Mateos M-V, Masszi T, Grzasko N, Hansson M, Sandhu I, Pour L, et al. Impact of prior therapy on the efficacy and safety of oral ixazomib-lenalidomide-dexamethasone vs. placebo-lenalidomide-dexamethasone in patients with relapsed/refractory multiple myeloma in TOURMALINE-MM1. Haematologica. 2017;102:1767–75.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA, et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med. 2007;357:2133–42.PubMedCrossRefGoogle Scholar
  40. 40.
    Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau J-L, Dmoszynska A, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357:2123–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Knight R, DeLap RJ, Zeldis JB. Lenalidomide and venous thrombosis in multiple myeloma. N Engl J Med. 2006;354:2079–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Durie BGM, Hoering A, Abidi MH, Rajkumar SV, Epstein J, Kahanic SP, et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): a randomised, open-label, phase 3 trial. Lancet. 2017;389:519–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Rajkumar SV, Jacobus S, Callander NS, Fonseca R, Vesole DH, Williams ME, et al. Lenalidomide plus high-dose dexamethasone versus lenalidomide plus low-dose dexamethasone as initial therapy for newly diagnosed multiple myeloma: an open-label randomised controlled trial. Lancet Oncol. 2010;11:29–37.PubMedCrossRefGoogle Scholar
  44. 44.
    Menon SP, Rajkumar SV, Lacy M, Falco P, Palumbo A. Thromboembolic events with lenalidomide-based therapy for multiple myeloma. Cancer. 2008;112:1522–8.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zonder JA, Barlogie B, Durie BGM, McCoy J, Crowley J, Hussein MA. Thrombotic complications in patients with newly diagnosed multiple myeloma treated with lenalidomide and dexamethasone: benefit of aspirin prophylaxis. Blood. 2006;108:403–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Richardson PG, Siegel DS, Vij R, Hofmeister CC, Baz R, Jagannath S, et al. Pomalidomide alone or in combination with low-dose dexamethasone in relapsed and refractory multiple myeloma: a randomized phase 2 study. Blood. 2014;123:1826–32.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Leleu X, Attal M, Arnulf B, Moreau P, Traulle C, Marit G, et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009-02. Blood. 2013;121:1968–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Moreau P, Dimopoulos MA, Richardson PG, Siegel DS, Cavo M, Corradini P, et al. Adverse event management in patients with relapsed and refractory multiple myeloma taking pomalidomide plus low-dose dexamethasone: a pooled analysis. Eur J Haematol. 2017;99:199–206.PubMedCrossRefGoogle Scholar
  49. 49.
    Lacy MQ, Allred JB, Gertz MA, Hayman SR, Short KD, Buadi F, et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood. 2011;118:2970–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Richardson PG, Siegel D, Baz R, Kelley SL, Munshi NC, Laubach J, et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood. 2013;121:1961–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lacy MQ, LaPlant BR, Laumann KM, Kumar S, Gertz MA, Hayman SR, et al. Pomalidomide, bortezomib and dexamethasone (PVD) for patients with relapsed lenalidomide refractory multiple myeloma (MM). Blood. 2014;124:304.Google Scholar
  52. 52.
    Sonneveld P, Asselbergs E, Zweegman S, van der Holt B, Kersten MJ, Vellenga E, et al. Phase 2 study of carfilzomib, thalidomide, and dexamethasone as induction/consolidation therapy for newly diagnosed multiple myeloma. Blood. 2015;125:449–56.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Danhof S, Schreder M, Rasche L, Strifler S, Einsele H, Knop S. “Real-life” experience of preapproval carfilzomib-based therapy in myeloma—analysis of cardiac toxicity and predisposing factors. Eur J Haematol. 2015;97:25–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Shah JJ, Stadtmauer EA, Abonour R, Cohen AD, Bensinger WI, Gasparetto C, et al. Carfilzomib, pomalidomide, and dexamethasone for relapsed or refractory myeloma. Blood. 2015;126:2284–90.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374:1621–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Lonial S, Richardson PG, San Miguel J, Sonneveld P, Schuster MW, Bladé J, et al. Characterisation of haematological profiles and low risk of thromboembolic events with bortezomib in patients with relapsed multiple myeloma. Br J Haematol. 2008;143:222–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Zangari M, Fink L, Zhan F, Tricot G. Low venous thromboembolic risk with bortezomib in multiple myeloma and potential protective effect with thalidomide/lenalidomide-based therapy: review of data from phase 3 trials and studies of novel combination regimens. Clin Lymphoma Myeloma Leuk. 2011;11:228–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Pye J, Ardeshirpour F, McCain A, Bellinger DA, Merricks E, Adams J, et al. Proteasome inhibition ablates activation of NF-κB in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol. 2003;284:H919–26.PubMedCrossRefGoogle Scholar
  59. 59.
    Stansfield WE, Tang RH, Moss NC, Baldwin AS, Willis MS, Selzman CH. Proteasome inhibition promotes regression of left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2008;294:H645–50.PubMedCrossRefGoogle Scholar
  60. 60.
    O’Connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF, et al. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res. 2009;15:7085–91.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Badros AZ, Vij R, Martin T, Zonder JA, Kunkel L, Wang Z, et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia. 2013;27:1707–14.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Vij R, Siegel DS, Jagannath S, Jakubowiak AJ, Stewart AK, McDonagh K, et al. An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol. 2012;158:739–48.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    • Atrash S, Tullos A, Panozzo S, Bhutani M, Van Rhee F, Barlogie B, et al. Cardiac complications in relapsed and refractory multiple myeloma patients treated with carfilzomib. Blood Cancer J. 2015;5:e272. This study reports significant cardiovascular adverse events necessitating hospitalization during the first two cycles of therapy with carfilzomib. It also reviews echocardiogram findings before and after treatment as well as BNP measurements.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Grandin EW, Ky B, Cornell RF, Carver J, Lenihan DJ. Patterns of cardiac toxicity associated with irreversible proteasome inhibition in the treatment of multiple myeloma. J Card Fail. 2015;21:138–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Fradley MG, Groarke JD, Laubach J, Alsina M, Lenihan DJ, Cornell RF, et al. Recurrent cardiotoxicity potentiated by the interaction of proteasome inhibitor and immunomodulatory therapy for the treatment of multiple myeloma. Br J Haematol. 2017;23:2147.Google Scholar
  66. 66.
    Kumar SK, Berdeja JG, Niesvizky R, Lonial S, Laubach JP, Hamadani M, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 2014;15:1503–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Jouni H, Aubry MC, Lacy MQ, Vincent Rajkumar S, Kumar SK, Frye RL, et al. Ixazomib cardiotoxicity: a possible class effect of proteasome inhibitors. Am J Hematol. 2017;92:220–1.PubMedCrossRefGoogle Scholar
  68. 68.
    Mcbride WG. Thalidomide and congenital abnormalities. Lancet. 1961;278:1358.CrossRefGoogle Scholar
  69. 69.
    Rajkumar SV, Gertz MA, Lacy MQ, Dispenzieri A, Fonseca R, Geyer SM, et al. Thalidomide as initial therapy for early-stage myeloma. Leukemia. 2003;17:775–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–71.PubMedCrossRefGoogle Scholar
  71. 71.
    Kristinsson SY, Fears TR, Gridley G, Turesson I, Mellqvist UH, Bjorkholm M, et al. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood. 2008;112:3582–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma. N Engl J Med. 2001;344:1951–2.PubMedCrossRefGoogle Scholar
  73. 73.
    Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2007;22:414–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Accaoui El RN, Shamseddeen WA, Taher AT. Thalidomide and thrombosis. A meta-analysis. Thromb Haemost. 2007;97:1031–6.CrossRefGoogle Scholar
  75. 75.
    Scarpace S, Hahn T, Roy H, Brown K, Paplham P, Chanan-Khan A, et al. Arterial thrombosis in four patients treated with thalidomide. Leuk Lymphoma. 2009;46:239–42.CrossRefGoogle Scholar
  76. 76.
    Goz M, Eren MN, Cakir O. Arterial thrombosis and thalidomide. J Thromb Thrombolysis. 2007;25:224–6.CrossRefGoogle Scholar
  77. 77.
    Libourel EJ, Sonneveld P, van der Holt B, de Maat MPM, Leebeek FWG. High incidence of arterial thrombosis in young patients treated for multiple myeloma: results of a prospective cohort study. Blood. 2010;116:22–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Bowcock SJ, Rassam SMB, Ward SM, Turner JT, Laffan M. Thromboembolism in patients on thalidomide for myeloma. Hematology. 2002;7:51–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Arboscello E, Bellodi A, Passalia C, Spallarossa P, Balleari E, Ponassi I, et al. Thalidomide-induced cardiotoxicity in multiple myeloma patients: an underestimated but clinically relevant issue. J Clin Oncol. 2010;28:e18544.CrossRefGoogle Scholar
  80. 80.
    Dimopoulos MA, Chen C, Spencer A, Niesvizky R, Attal M, Stadtmauer EA, et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia. 2009;23:2147–52.PubMedCrossRefGoogle Scholar
  81. 81.
  82. 82.
    Mikhael J, Rajkumar V, Roy V, Hayman SR, Fonseca R, Detweiler Short K, et al. Efficacy of pomalidomide plus low-dose dexamethasone in multiple myeloma patients despite previous use of lenalidomide. J Clin Oncol. 2011;29:8067.CrossRefGoogle Scholar
  83. 83.
    Lacy MQ, Hayman SR, Gertz MA, Dispenzieri A, Buadi F, Kumar S, et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27:5008–14.PubMedCrossRefGoogle Scholar
  84. 84.
    Miguel JS, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14:1055–66.CrossRefGoogle Scholar
  85. 85.
    Dimopoulos MA, Leleu X, Palumbo A, Moreau P, Delforge M, Cavo M, et al. Expert panel consensus statement on the optimal use of pomalidomide in relapsed and refractory multiple myeloma. Leukemia. 2014;28:1573–85.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wei Q, Xia Y. Proteasome inhibition down-regulates endothelial nitric-oxide synthase phosphorylation and function. J Biol Chem. 2006;281:21,652–9.CrossRefGoogle Scholar
  87. 87.
    Versari D. Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2132–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Aue G, Nelson Lozier J, Tian X, Cullinane AM, Soto S, Samsel L, et al. Inflammation, TNFα and endothelial dysfunction link lenalidomide to venous thrombosis in chronic lymphocytic leukemia. Am J Hematol. 2011;86:835–40.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Rosovsky R, Hong F, Tocco D, Connell B, Mitsiades C, Schlossman R, et al. Endothelial stress products and coagulation markers in patients with multiple myeloma treated with lenalidomide plus dexamethasone: an observational study. Br J Haematol. 2013;160:351–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375:1457–67.PubMedCrossRefGoogle Scholar
  91. 91.
    Li W, Garcia D, Cornell RF, Gailani D, Laubach J, Maglio ME, et al. Cardiovascular and thrombotic complications of novel multiple myeloma therapies. JAMA Oncol. 2017;3:980.PubMedCrossRefGoogle Scholar
  92. 92.
    Lyman GH, Khorana AA, Falanga A, Clarke-Pearson D, Flowers C, Jahanzeb M, et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol. 2007;25:5490–505.PubMedCrossRefGoogle Scholar
  93. 93.
    Palumbo A, Cavo M, Bringhen S, Zamagni E, Romano A, Patriarca F, et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: a phase III, open-label, randomized trial. J Clin Oncol. 2011;29:986–93.PubMedCrossRefGoogle Scholar
  94. 94.
    Larocca A, Cavallo F, Bringhen S, Di Raimondo F, Falanga A, Evangelista A, et al. Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood. 2012;119:933–9.quiz1093PubMedCrossRefGoogle Scholar
  95. 95.
    Palumbo A, Rajkumar SV, San Miguel JF, Larocca A, Niesvizky R, Morgan G, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol. 2014;32:587–600.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kamat AV. Rivaroxaban is an effective and well tolerated anti thrombotic agent in patients on lenalidomide therapy and in multiple myeloma. Blood. 2014;124:5095.Google Scholar
  97. 97.
    Meseeha MG, Kolade VO, Attia MN. Partially reversible bortezomib-induced cardiotoxicity: an unusual cause of acute cardiomyopathy. J Community Hosp Intern Med Perspect. 2015;5:28,982.CrossRefGoogle Scholar
  98. 98.
    Voortman J, Giaccone G. Severe reversible cardiac failure after bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report. BMC Cancer. 2006;6:11.CrossRefGoogle Scholar
  99. 99.
    Russell SD, Lyon A, Lenihan DJ, Moreau P, Joshua D, Chng W-J, et al. Serial echocardiographic assessment of patients (Pts) with relapsed multiple myeloma (RMM) receiving carfilzomib and dexamethasone (Kd) vs bortezomib and dexamethasone (Vd): a substudy of the phase 3 Endeavor Trial (NCT01568866). Blood. 2015;126:4250.Google Scholar
  100. 100.
    Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Almutairi MM, Alshammari M, et al. Apremilast reversed carfilzomib-induced cardiotoxicity through inhibition of oxidative stress, NF-κB and MAPK signaling in rats. Toxicol Mech Methods. 2016;26:700–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Imam F, Al-Harbi NO, Al-Harbia MM, Korashy HM, Ansari MA, Sayed-Ahmed MM, et al. Rutin attenuates carfilzomib-induced cardiotoxicity through inhibition of NF-κB, hypertrophic gene expression and oxidative stress. Cardiovasc Toxicol. 2017;17:58–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Mikhael J. Management of carfilzomib-associated cardiac adverse events. Clin Lymphoma Myeloma Leuk. 2016;16:241–5.PubMedCrossRefGoogle Scholar
  103. 103.
    Koulaouzidis G, Lyon AR. Proteasome inhibitors as a potential cause of heart failure. Heart Fail Clin. 2017;13:289–95.PubMedCrossRefGoogle Scholar
  104. 104.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol. 2017.Google Scholar
  105. 105.
    Heher EC, Rennke HG, Laubach JP, Richardson PG. Kidney disease and multiple myeloma. Clin J Am Soc Nephrol. 2013;8:2007–17.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of South FloridaTampaUSA
  2. 2.Department of Cardiovascular SciencesUniversity of South FloridaTampaUSA
  3. 3.Cardio-Oncology ProgramH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations