Novel Mapping Strategies for Ventricular Tachycardia Ablation

Abstract

Despite advances in antiarrhythmic and device therapy, ventricular tachycardia (VT) continues to be a major cause of increased morbidity and mortality. During scar-mediated monomorphic ventricular tachycardia ablation, the search for critical isthmus sites continues to be the primary goal during successful ablative procedures. However, given the overwhelming hemodynamic instability of most ventricular arrhythmias (> 70%), VT ablation is increasingly performed during sinus rhythm. This technique requires either a greater reliance on isthmus surrogates, or more extensive ablation techniques and is a more probabilistic approach to substrate modification. We believe that a better understanding of scar physiology and activation during sinus rhythm has important implications for clinical workflow and mechanistic improvements with current ablation strategies. With advancements in high-density mapping and multi-electrode catheter technology, mapping of VT substrates is performed with higher resolution, with improved visualization of local abnormal ventricular activities (LAVA), and with a more nuanced functional understanding of late potentials. As a prerequisite, our practice for VT ablation starts with a high-density structural map to identify voltage abnormalities as well as an isochronal functional map of sinus rhythm activation to identify region of discontinuous wavefront propagation. As the era of increased automation has emerged, there continues to be vast array of customizable features, and we have adopted the use of multiple wavefront mapping to further elucidate possible arrhythmogenic substrate. Our emerging understanding of how scar propagation patterns relate to areas of abnormal signals and critical isthmuses may greatly improve the ability to identify surrogates during sinus rhythm and help localize the most arrhythmogenic regions within a given scar. In the hemodynamically unstable patients, we routinely integrate isochronal late activation mapping (ILAM) to identify areas of slow conduction to initiate our targeted ablation and substrate modification. Multi-electrode delineation of the entire reentrant VT circuit has value in understanding the size of the circuit, rotational nature, and transmural extent of human reentry. Correlative studies between the activation of the complete VT circuit and sinus rhythm are likely to provide important mechanistic insights on where fixed and/or functional block occurs within a complex scar substrate.

This is a preview of subscription content, access via your institution.

Fig. 1

References and Recommended Reading

  1. 1.

    Josephson ME, Horowitz LN, Spielman SR, Waxman HL, Greenspan AM. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol. 1982;49(1):207–20. https://doi.org/10.1016/0002-9149(82)90295-8.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Natale A, Raviele A, Al-Ahmad A, Alfieri O, Aliot E, Almendral J, et al. Venice chart international consensus document on ventricular tachycardia/ventricular fibrillation ablation. J Cardiovasc Electrophysiol. 2010;21(3):339–79. https://doi.org/10.1111/j.1540-8167.2009.01686.x.

    Article  PubMed  Google Scholar 

  3. 3.

    Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med. 1996;2(12):1393–5. https://doi.org/10.1038/nm1296-1393.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Di Biase L, Burkhardt JD, Lakkireddy D, Carbucicchio C, Mohanty S, Mohanty P, et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol. 2015;66(25):2872–82. https://doi.org/10.1016/j.jacc.2015.10.026.

    Article  PubMed  Google Scholar 

  5. 5.

    Gökoğlan Y, Mohanty S, Gianni C, Santangeli P, Trivedi C, Güneş MF, et al. Scar homogenization versus limited-substrate ablation in patients with nonischemic cardiomyopathy and ventricular tachycardia. J Am Coll Cardiol. 2016;68(18):1990–8. https://doi.org/10.1016/j.jacc.2016.08.033.

    Article  PubMed  Google Scholar 

  6. 6.

    Jaïs P, Maury P, Khairy P, Sacher F, Nault I, Komatsu Y, et al. Elimination of local abnormal ventricular activities. Circulation. 2012;125(18):2184–96. https://doi.org/10.1161/CIRCULATIONAHA.111.043216.

    Article  PubMed  Google Scholar 

  7. 7.

    Vergara P, Trevisi N, Ricco A, Petracca F, Baratto F, Cireddu M, et al. Late potentials abolition as an additional technique for reduction of arrhythmia recurrence in scar related ventricular tachycardia ablation. J Cardiovasc Electrophysiol. 2012;23(6):621–7. https://doi.org/10.1111/j.1540-8167.2011.02246.x.

    Article  PubMed  Google Scholar 

  8. 8.

    Reddy VY, Reynolds MR, Neuzil P, Richardson AW, Taborsky M, Jongnarangsin K, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007;357(26):2657–65. https://doi.org/10.1056/NEJMoa065457.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000;101(11):1288–96. https://doi.org/10.1161/01.CIR.101.11.1288.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Tzou WS, Frankel DS, Hegeman T, Supple GE, Garcia FC, Santangeli P, Katz DF, Sauer WH, Marchlinski FE. Core isolation of critical arrhythmia elements for treatment of multiple scar-based ventricular tachycardias. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 114.002310.

  11. 11.

    Anter E, Josephson M. Substrate mapping for ventricular tachycardia. JACC Clin Electrophysiol. 2015;1:341–52.

    Article  Google Scholar 

  12. 12.

    Tung R, Josephson ME, Bradfield JS, Shivkumar K. Directional influences of ventricular activation on myocardial scar characterization. Circulation: Arrhythmia and Electrophysiology. 2016;9(8):e004155. https://doi.org/10.1161/CIRCEP.116.004155.

    Google Scholar 

  13. 13.

    Mountantonakis SE, Park RE, Frankel DS, Hutchinson MD, Dixit S, Cooper J, et al. Relationship between voltage map “channels” and the location of critical isthmus sites in patients with post-infarction cardiomyopathy and ventricular tachycardia. J Am Coll Cardiol. 2013;61(20):2088–95. https://doi.org/10.1016/j.jacc.2013.02.031.

    Article  PubMed  Google Scholar 

  14. 14.

    Sacher F, Lim HS, Derval N, Denis A, Berte B, Yamashita S, et al. Substrate mapping and ablation for ventricular tachycardia: the LAVA approach. J Cardiovasc Electrophysiol. 2015;26(4):464–71. https://doi.org/10.1111/jce.12565.

    Article  PubMed  Google Scholar 

  15. 15.

    Berruezo A, Fernández-Armenta J, Andreu D, Penela D, Herczku C, Evertz R, Cipolletta L, Acosta J, Borràs R, Arbelo E. Scar dechanneling: a new method for scar-related left ventricular tachycardia substrate ablation. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 114.002386.

  16. 16.

    Berruezo A, Fernández-Armenta J, Mont L, Zeljko H, Andreu D, Herczku C, Boussy T, Tolosana JM, Arbelo E, Brugada J. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ: Arrhythm Electrophysiol. 2011:CIRCEP. 110.960740.

  17. 17.

    Tung R, Mathuria NS, Nagel R, Mandapati R, Buch EF, Bradfield JS, Vaseghi M, Boyle NG, Shivkumar K. Impact of local ablation on inter-connected channels within ventricular scar: mechanistic implications for substrate modification. Circ: Arrhythm Electrophysiol. 2013:CIRCEP. 113.000867.

  18. 18.

    Arenal A, Glez-Torrecilla E, Ortiz M, Villacastín J, Fdez-Portales J, Sousa E, et al. Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease. J Am Coll Cardiol. 2003;41(1):81–92. https://doi.org/10.1016/S0735-1097(02)02623-2.

    Article  PubMed  Google Scholar 

  19. 19.

    Di Biase L, Santangeli P, Burkhardt DJ, Bai R, Mohanty P, Carbucicchio C, et al. Endo-epicardial homogenization of the scar versus limited substrate ablation for the treatment of electrical storms in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2012;60(2):132–41. https://doi.org/10.1016/j.jacc.2012.03.044.

    Article  PubMed  Google Scholar 

  20. 20.

    Santangeli P, Marchlinski FE. Substrate mapping for unstable ventricular tachycardia. Heart Rhythm. 2016;13(2):569–83. https://doi.org/10.1016/j.hrthm.2015.09.023.

    Article  PubMed  Google Scholar 

  21. 21.

    Della Bella P, Bisceglia C, Tung R. Multielectrode contact mapping to assess scar modification in post-myocardial infarction ventricular tachycardia patients. Europace. 2012;14:ii7–ii12.

    Article  PubMed  Google Scholar 

  22. 22.

    Tung R, Nakahara S, Ramirez R, Gui D, Magyar C, Lai C, et al. Accuracy of combined endocardial and epicardial electroanatomic mapping of a reperfused porcine infarct model: a comparison of electrofield and magnetic systems with histopathologic correlation. Heart Rhythm. 2011;8(3):439–47. https://doi.org/10.1016/j.hrthm.2010.10.044.

    Article  PubMed  Google Scholar 

  23. 23.

    Nakahara S, Tung R, Ramirez RJ, Gima J, Wiener I, Mahajan A, Boyle NG, Shivkumar K. Distribution of late potentials within infarct scars assessed by ultra high-density mapping. Heart Rhythm. 2010.

  24. 24.

    Tschabrunn CMRS, Dorman NC, Nezafat R, Josephson ME, Anter E. High-resolution mapping of ventricular scar: comparison between single and multi-electrode catheters. Circ Arrhythm Electrophysiol. 2016;9(6):e003841. https://doi.org/10.1161/CIRCEP.115.003841.

    Article  PubMed  Google Scholar 

  25. 25.

    Berte B, Relan J, Sacher F, et al. Impact of electrode type on mapping of scar-related VT. J Cardiovasc Electrophysiol. 2015;26(11):1213–23. https://doi.org/10.1111/jce.12761.

    Article  Google Scholar 

  26. 26.

    Viswanathan K, Mantziari L, Butcher C, Hodkinson E, Lim E, Khan H, et al. Evaluation of a novel high-resolution mapping system for catheter ablation of ventricular arrhythmias. Heart Rhythm. 2017;14(2):176–83. https://doi.org/10.1016/j.hrthm.2016.11.018.

    Article  PubMed  Google Scholar 

  27. 27.

    Tung R, Nakahara S, Maccabelli G, Buch E, Wiener I, Boyle NG, et al. Ultra high-density multipolar mapping with double ventricular access: a novel technique for ablation of ventricular tachycardia. J Cardiovasc Electrophysiol. 2011;22(1):49–56. https://doi.org/10.1111/j.1540-8167.2010.01859.x.

    Article  PubMed  Google Scholar 

  28. 28.

    Acosta J, Penela D, Andreu D et al. Multielectrode vs. point-by-point mapping for ventricular tachycardia substrate ablation: a randomized study. Europace. 2017.

  29. 29.

    Tanaka Y, Genet M, Lee LC, Martin AJ, Sievers R, Gerstenfeld EP. Utility of high-resolution electroanatomic mapping of the left ventricle using a multispline basket catheter in a swine model of chronic myocardial infarction. Heart Rhythm. 2015;12(1):144–54. https://doi.org/10.1016/j.hrthm.2014.08.036.

    Article  PubMed  Google Scholar 

  30. 30.

    Anter E, Tschabrunn CM, Buxton AE, Josephson ME. High-resolution mapping of post-infarction reentrant ventricular tachycardia: electrophysiological characterization of the circuit. Circulation. 2016:CIRCULATIONAHA. 116.021955.

  31. 31.

    Nuhrich JM, Kaiser L, Akbulak RO, Schaffer BN, Eickholt C, Schwarzl M, Kuklik P, Moser J, Jularic M, Willems S, Meyer C. Substrate characterization and catheter ablation in patients with scar-related ventricular tachycardia using ultra high-density 3-D mapping. J Cardiovasc Electrophysiol. 2017.

  32. 32.

    Lin C-Y, Silberbauer J, Lin Y-J, Lo M-T, Lin C, Chang H-C, et al. Simultaneous amplitude frequency electrogram transformation (SAFE-T) mapping to identify ventricular tachycardia arrhythmogenic potentials in sinus rhythm. JACC: Clinical Electrophysiology. 2016;2:459–70.

    Google Scholar 

  33. 33.

    Te ALD, Higa S, Chung F-P, Lin C-Y, Lo M-T, Liu C-A, et al. The use of a novel signal analysis to identify the origin of idiopathic right ventricular outflow tract ventricular tachycardia during sinus rhythm: simultaneous amplitude frequency electrogram transformation mapping. PLoS One. 2017;12(3):e0173189. https://doi.org/10.1371/journal.pone.0173189.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Campos B, Jauregui ME, Marchlinski FE, Dixit S, Gerstenfeld EP. Use of a novel fragmentation map to identify the substrate for ventricular tachycardia in postinfarction cardiomyopathy. Heart Rhythm. 2015;12(1):95–103. https://doi.org/10.1016/j.hrthm.2014.10.002.

    Article  PubMed  Google Scholar 

  35. 35.

    Jackson N, Gizurarson S, Viswanathan K, King B, Massé S, Kusha M, Porta-Sanchez A, Jacob JR, Khan F, Das M. Decrement evoked potential (DEEP) mapping: the basis of a mechanistic strategy for ventricular tachycardia ablation. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 115.003083.

  36. 36.

    Jamil-Copley S, Vergara P, Carbucicchio C, Linton N, Koa-Wing M, Luther V, Francis DP, Peters NS, Davies DW, Tondo C. Application of ripple mapping to visualise slow conduction channels within the infarct-related left ventricular scar. Circul: Arrhythm Electrophysiol. 2014:CIRCEP. 114.001827.

  37. 37.

    Luther V, Linton NW, Jamil-Copley S, Koa-Wing M, Lim PB, Qureshi N, et al. A prospective study of ripple mapping the post-infarct ventricular scar to guide substrate ablation for ventricular tachycardia. Circulation: Arrhythmia and Electrophysiology. 2016;9(6):e004072. https://doi.org/10.1161/CIRCEP.116.004072.

    Google Scholar 

  38. 38.

    Fernandez-Armenta J, Andreu D, Penela D, et al. Sinus rhythm detection of conducting channels and ventricular tachycardia isthmus in arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2014;11(5):747–54. https://doi.org/10.1016/j.hrthm.2014.02.016.

    Article  PubMed  Google Scholar 

  39. 39.

    Arenal A, Glez-Torrecilla E, Ortiz M, Villacastin J, Fdez-Portales J, Sousa E, et al. Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease. J Am Coll Cardiol. 2003;41(1):81–92. https://doi.org/10.1016/S0735-1097(02)02623-2.

    Article  PubMed  Google Scholar 

  40. 40.

    Irie T, Yu R, Bradfield JS, Vaseghi M, Buch EF, Ajijola O, et al. Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: systematic analysis of isochronal late activation mapping. Circ Arrhythm Electrophysiol. 2015;8(2):390–9. https://doi.org/10.1161/CIRCEP.114.002637.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Nayyar S, Wilson L, Ganesan AN, Sullivan T, Kuklik P, Chapman D, et al. High-density mapping of ventricular scar: a comparison of ventricular tachycardia (VT) supporting channels with channels that do not support VT. Circ Arrhythm Electrophysiol. 2014;7(1):90–8. https://doi.org/10.1161/CIRCEP.113.000882.

    Article  PubMed  Google Scholar 

  42. 42.

    Irie T, Yu R, Bradfield JS, Vaseghi M, Buch EF, Ajijola O, Macias C, Fujimura O, Mandapati R, Boyle NG. Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: a systematic analysis of isochronal late activation mapping. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 114.002637.

  43. 43.

    Tung R, Josephson ME, Bradfield JS, Shivkumar K. Directional influences of ventricular activation on myocardial scar characterization: voltage mapping with multiple wavefronts during ventricular tachycardia ablation. Circ Arrhythm Electrophysiol. 2016;9(8):e004155. https://doi.org/10.1161/CIRCEP.116.004155.

    Article  PubMed  Google Scholar 

  44. 44.

    Paul T, Moak JP, Morris C, Garson A. Epicardial mapping: how to measure local activation? Pacing Clin Electrophysiol. 1990;13(3):285–92. https://doi.org/10.1111/j.1540-8159.1990.tb02042.x.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Massé S, Magtibay K, Jackson N, Asta J, Kusha M, Zhang B, et al. Resolving myocardial activation with novel omnipolar electrograms. Circulation: Arrhythmia and Electrophysiology. 2016;9(7):e004107. https://doi.org/10.1161/CIRCEP.116.004107.

    PubMed Central  Google Scholar 

  46. 46.

    Deno DC, Balachandran R, Morgan D, Ahmad F, Massé S, Nanthakumar K. Orientation-independent catheter-based characterization of myocardial activation. IEEE Trans Biomed Eng. 2017;64(5):1067–77. https://doi.org/10.1109/TBME.2016.2589158.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roderick Tung MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Arrhythmia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aziz, Z., Tung, R. Novel Mapping Strategies for Ventricular Tachycardia Ablation. Curr Treat Options Cardio Med 20, 34 (2018). https://doi.org/10.1007/s11936-018-0615-1

Download citation

Keywords

  • Ventricular tachycardia
  • Mapping
  • Functional mapping