Advertisement

Novel Mapping Strategies for Ventricular Tachycardia Ablation

Arrhythmia (G Upadhyay, Section Editor)
  • 228 Downloads
Part of the following topical collections:
  1. Topical Collection on Arrhythmia

Abstract

Despite advances in antiarrhythmic and device therapy, ventricular tachycardia (VT) continues to be a major cause of increased morbidity and mortality. During scar-mediated monomorphic ventricular tachycardia ablation, the search for critical isthmus sites continues to be the primary goal during successful ablative procedures. However, given the overwhelming hemodynamic instability of most ventricular arrhythmias (> 70%), VT ablation is increasingly performed during sinus rhythm. This technique requires either a greater reliance on isthmus surrogates, or more extensive ablation techniques and is a more probabilistic approach to substrate modification. We believe that a better understanding of scar physiology and activation during sinus rhythm has important implications for clinical workflow and mechanistic improvements with current ablation strategies. With advancements in high-density mapping and multi-electrode catheter technology, mapping of VT substrates is performed with higher resolution, with improved visualization of local abnormal ventricular activities (LAVA), and with a more nuanced functional understanding of late potentials. As a prerequisite, our practice for VT ablation starts with a high-density structural map to identify voltage abnormalities as well as an isochronal functional map of sinus rhythm activation to identify region of discontinuous wavefront propagation. As the era of increased automation has emerged, there continues to be vast array of customizable features, and we have adopted the use of multiple wavefront mapping to further elucidate possible arrhythmogenic substrate. Our emerging understanding of how scar propagation patterns relate to areas of abnormal signals and critical isthmuses may greatly improve the ability to identify surrogates during sinus rhythm and help localize the most arrhythmogenic regions within a given scar. In the hemodynamically unstable patients, we routinely integrate isochronal late activation mapping (ILAM) to identify areas of slow conduction to initiate our targeted ablation and substrate modification. Multi-electrode delineation of the entire reentrant VT circuit has value in understanding the size of the circuit, rotational nature, and transmural extent of human reentry. Correlative studies between the activation of the complete VT circuit and sinus rhythm are likely to provide important mechanistic insights on where fixed and/or functional block occurs within a complex scar substrate.

Keywords

Ventricular tachycardia Mapping Functional mapping 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

  1. 1.
    Josephson ME, Horowitz LN, Spielman SR, Waxman HL, Greenspan AM. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am J Cardiol. 1982;49(1):207–20.  https://doi.org/10.1016/0002-9149(82)90295-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Natale A, Raviele A, Al-Ahmad A, Alfieri O, Aliot E, Almendral J, et al. Venice chart international consensus document on ventricular tachycardia/ventricular fibrillation ablation. J Cardiovasc Electrophysiol. 2010;21(3):339–79.  https://doi.org/10.1111/j.1540-8167.2009.01686.x.CrossRefPubMedGoogle Scholar
  3. 3.
    Ben-Haim SA, Osadchy D, Schuster I, Gepstein L, Hayam G, Josephson ME. Nonfluoroscopic, in vivo navigation and mapping technology. Nat Med. 1996;2(12):1393–5.  https://doi.org/10.1038/nm1296-1393.CrossRefPubMedGoogle Scholar
  4. 4.
    Di Biase L, Burkhardt JD, Lakkireddy D, Carbucicchio C, Mohanty S, Mohanty P, et al. Ablation of stable VTs versus substrate ablation in ischemic cardiomyopathy: the VISTA randomized multicenter trial. J Am Coll Cardiol. 2015;66(25):2872–82.  https://doi.org/10.1016/j.jacc.2015.10.026.CrossRefPubMedGoogle Scholar
  5. 5.
    Gökoğlan Y, Mohanty S, Gianni C, Santangeli P, Trivedi C, Güneş MF, et al. Scar homogenization versus limited-substrate ablation in patients with nonischemic cardiomyopathy and ventricular tachycardia. J Am Coll Cardiol. 2016;68(18):1990–8.  https://doi.org/10.1016/j.jacc.2016.08.033.CrossRefPubMedGoogle Scholar
  6. 6.
    Jaïs P, Maury P, Khairy P, Sacher F, Nault I, Komatsu Y, et al. Elimination of local abnormal ventricular activities. Circulation. 2012;125(18):2184–96.  https://doi.org/10.1161/CIRCULATIONAHA.111.043216.CrossRefPubMedGoogle Scholar
  7. 7.
    Vergara P, Trevisi N, Ricco A, Petracca F, Baratto F, Cireddu M, et al. Late potentials abolition as an additional technique for reduction of arrhythmia recurrence in scar related ventricular tachycardia ablation. J Cardiovasc Electrophysiol. 2012;23(6):621–7.  https://doi.org/10.1111/j.1540-8167.2011.02246.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Reddy VY, Reynolds MR, Neuzil P, Richardson AW, Taborsky M, Jongnarangsin K, et al. Prophylactic catheter ablation for the prevention of defibrillator therapy. N Engl J Med. 2007;357(26):2657–65.  https://doi.org/10.1056/NEJMoa065457.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Marchlinski FE, Callans DJ, Gottlieb CD, Zado E. Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation. 2000;101(11):1288–96.  https://doi.org/10.1161/01.CIR.101.11.1288.CrossRefPubMedGoogle Scholar
  10. 10.
    Tzou WS, Frankel DS, Hegeman T, Supple GE, Garcia FC, Santangeli P, Katz DF, Sauer WH, Marchlinski FE. Core isolation of critical arrhythmia elements for treatment of multiple scar-based ventricular tachycardias. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 114.002310.Google Scholar
  11. 11.
    Anter E, Josephson M. Substrate mapping for ventricular tachycardia. JACC Clin Electrophysiol. 2015;1:341–52.CrossRefGoogle Scholar
  12. 12.
    Tung R, Josephson ME, Bradfield JS, Shivkumar K. Directional influences of ventricular activation on myocardial scar characterization. Circulation: Arrhythmia and Electrophysiology. 2016;9(8):e004155.  https://doi.org/10.1161/CIRCEP.116.004155.Google Scholar
  13. 13.
    Mountantonakis SE, Park RE, Frankel DS, Hutchinson MD, Dixit S, Cooper J, et al. Relationship between voltage map “channels” and the location of critical isthmus sites in patients with post-infarction cardiomyopathy and ventricular tachycardia. J Am Coll Cardiol. 2013;61(20):2088–95.  https://doi.org/10.1016/j.jacc.2013.02.031.CrossRefPubMedGoogle Scholar
  14. 14.
    Sacher F, Lim HS, Derval N, Denis A, Berte B, Yamashita S, et al. Substrate mapping and ablation for ventricular tachycardia: the LAVA approach. J Cardiovasc Electrophysiol. 2015;26(4):464–71.  https://doi.org/10.1111/jce.12565.CrossRefPubMedGoogle Scholar
  15. 15.
    Berruezo A, Fernández-Armenta J, Andreu D, Penela D, Herczku C, Evertz R, Cipolletta L, Acosta J, Borràs R, Arbelo E. Scar dechanneling: a new method for scar-related left ventricular tachycardia substrate ablation. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 114.002386.Google Scholar
  16. 16.
    Berruezo A, Fernández-Armenta J, Mont L, Zeljko H, Andreu D, Herczku C, Boussy T, Tolosana JM, Arbelo E, Brugada J. Combined endocardial and epicardial catheter ablation in arrhythmogenic right ventricular dysplasia incorporating scar dechanneling technique. Circ: Arrhythm Electrophysiol. 2011:CIRCEP. 110.960740.Google Scholar
  17. 17.
    Tung R, Mathuria NS, Nagel R, Mandapati R, Buch EF, Bradfield JS, Vaseghi M, Boyle NG, Shivkumar K. Impact of local ablation on inter-connected channels within ventricular scar: mechanistic implications for substrate modification. Circ: Arrhythm Electrophysiol. 2013:CIRCEP. 113.000867.Google Scholar
  18. 18.
    Arenal A, Glez-Torrecilla E, Ortiz M, Villacastín J, Fdez-Portales J, Sousa E, et al. Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease. J Am Coll Cardiol. 2003;41(1):81–92.  https://doi.org/10.1016/S0735-1097(02)02623-2.CrossRefPubMedGoogle Scholar
  19. 19.
    Di Biase L, Santangeli P, Burkhardt DJ, Bai R, Mohanty P, Carbucicchio C, et al. Endo-epicardial homogenization of the scar versus limited substrate ablation for the treatment of electrical storms in patients with ischemic cardiomyopathy. J Am Coll Cardiol. 2012;60(2):132–41.  https://doi.org/10.1016/j.jacc.2012.03.044.CrossRefPubMedGoogle Scholar
  20. 20.
    Santangeli P, Marchlinski FE. Substrate mapping for unstable ventricular tachycardia. Heart Rhythm. 2016;13(2):569–83.  https://doi.org/10.1016/j.hrthm.2015.09.023.CrossRefPubMedGoogle Scholar
  21. 21.
    Della Bella P, Bisceglia C, Tung R. Multielectrode contact mapping to assess scar modification in post-myocardial infarction ventricular tachycardia patients. Europace. 2012;14:ii7–ii12.CrossRefPubMedGoogle Scholar
  22. 22.
    Tung R, Nakahara S, Ramirez R, Gui D, Magyar C, Lai C, et al. Accuracy of combined endocardial and epicardial electroanatomic mapping of a reperfused porcine infarct model: a comparison of electrofield and magnetic systems with histopathologic correlation. Heart Rhythm. 2011;8(3):439–47.  https://doi.org/10.1016/j.hrthm.2010.10.044.CrossRefPubMedGoogle Scholar
  23. 23.
    Nakahara S, Tung R, Ramirez RJ, Gima J, Wiener I, Mahajan A, Boyle NG, Shivkumar K. Distribution of late potentials within infarct scars assessed by ultra high-density mapping. Heart Rhythm. 2010.Google Scholar
  24. 24.
    Tschabrunn CMRS, Dorman NC, Nezafat R, Josephson ME, Anter E. High-resolution mapping of ventricular scar: comparison between single and multi-electrode catheters. Circ Arrhythm Electrophysiol. 2016;9(6):e003841.  https://doi.org/10.1161/CIRCEP.115.003841.CrossRefPubMedGoogle Scholar
  25. 25.
    Berte B, Relan J, Sacher F, et al. Impact of electrode type on mapping of scar-related VT. J Cardiovasc Electrophysiol. 2015;26(11):1213–23.  https://doi.org/10.1111/jce.12761.CrossRefGoogle Scholar
  26. 26.
    Viswanathan K, Mantziari L, Butcher C, Hodkinson E, Lim E, Khan H, et al. Evaluation of a novel high-resolution mapping system for catheter ablation of ventricular arrhythmias. Heart Rhythm. 2017;14(2):176–83.  https://doi.org/10.1016/j.hrthm.2016.11.018.CrossRefPubMedGoogle Scholar
  27. 27.
    Tung R, Nakahara S, Maccabelli G, Buch E, Wiener I, Boyle NG, et al. Ultra high-density multipolar mapping with double ventricular access: a novel technique for ablation of ventricular tachycardia. J Cardiovasc Electrophysiol. 2011;22(1):49–56.  https://doi.org/10.1111/j.1540-8167.2010.01859.x.CrossRefPubMedGoogle Scholar
  28. 28.
    Acosta J, Penela D, Andreu D et al. Multielectrode vs. point-by-point mapping for ventricular tachycardia substrate ablation: a randomized study. Europace. 2017.Google Scholar
  29. 29.
    Tanaka Y, Genet M, Lee LC, Martin AJ, Sievers R, Gerstenfeld EP. Utility of high-resolution electroanatomic mapping of the left ventricle using a multispline basket catheter in a swine model of chronic myocardial infarction. Heart Rhythm. 2015;12(1):144–54.  https://doi.org/10.1016/j.hrthm.2014.08.036.CrossRefPubMedGoogle Scholar
  30. 30.
    Anter E, Tschabrunn CM, Buxton AE, Josephson ME. High-resolution mapping of post-infarction reentrant ventricular tachycardia: electrophysiological characterization of the circuit. Circulation. 2016:CIRCULATIONAHA. 116.021955.Google Scholar
  31. 31.
    Nuhrich JM, Kaiser L, Akbulak RO, Schaffer BN, Eickholt C, Schwarzl M, Kuklik P, Moser J, Jularic M, Willems S, Meyer C. Substrate characterization and catheter ablation in patients with scar-related ventricular tachycardia using ultra high-density 3-D mapping. J Cardiovasc Electrophysiol. 2017.Google Scholar
  32. 32.
    Lin C-Y, Silberbauer J, Lin Y-J, Lo M-T, Lin C, Chang H-C, et al. Simultaneous amplitude frequency electrogram transformation (SAFE-T) mapping to identify ventricular tachycardia arrhythmogenic potentials in sinus rhythm. JACC: Clinical Electrophysiology. 2016;2:459–70.Google Scholar
  33. 33.
    Te ALD, Higa S, Chung F-P, Lin C-Y, Lo M-T, Liu C-A, et al. The use of a novel signal analysis to identify the origin of idiopathic right ventricular outflow tract ventricular tachycardia during sinus rhythm: simultaneous amplitude frequency electrogram transformation mapping. PLoS One. 2017;12(3):e0173189.  https://doi.org/10.1371/journal.pone.0173189.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Campos B, Jauregui ME, Marchlinski FE, Dixit S, Gerstenfeld EP. Use of a novel fragmentation map to identify the substrate for ventricular tachycardia in postinfarction cardiomyopathy. Heart Rhythm. 2015;12(1):95–103.  https://doi.org/10.1016/j.hrthm.2014.10.002.CrossRefPubMedGoogle Scholar
  35. 35.
    Jackson N, Gizurarson S, Viswanathan K, King B, Massé S, Kusha M, Porta-Sanchez A, Jacob JR, Khan F, Das M. Decrement evoked potential (DEEP) mapping: the basis of a mechanistic strategy for ventricular tachycardia ablation. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 115.003083.Google Scholar
  36. 36.
    Jamil-Copley S, Vergara P, Carbucicchio C, Linton N, Koa-Wing M, Luther V, Francis DP, Peters NS, Davies DW, Tondo C. Application of ripple mapping to visualise slow conduction channels within the infarct-related left ventricular scar. Circul: Arrhythm Electrophysiol. 2014:CIRCEP. 114.001827.Google Scholar
  37. 37.
    Luther V, Linton NW, Jamil-Copley S, Koa-Wing M, Lim PB, Qureshi N, et al. A prospective study of ripple mapping the post-infarct ventricular scar to guide substrate ablation for ventricular tachycardia. Circulation: Arrhythmia and Electrophysiology. 2016;9(6):e004072.  https://doi.org/10.1161/CIRCEP.116.004072.Google Scholar
  38. 38.
    Fernandez-Armenta J, Andreu D, Penela D, et al. Sinus rhythm detection of conducting channels and ventricular tachycardia isthmus in arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm. 2014;11(5):747–54.  https://doi.org/10.1016/j.hrthm.2014.02.016.CrossRefPubMedGoogle Scholar
  39. 39.
    Arenal A, Glez-Torrecilla E, Ortiz M, Villacastin J, Fdez-Portales J, Sousa E, et al. Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease. J Am Coll Cardiol. 2003;41(1):81–92.  https://doi.org/10.1016/S0735-1097(02)02623-2.CrossRefPubMedGoogle Scholar
  40. 40.
    Irie T, Yu R, Bradfield JS, Vaseghi M, Buch EF, Ajijola O, et al. Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: systematic analysis of isochronal late activation mapping. Circ Arrhythm Electrophysiol. 2015;8(2):390–9.  https://doi.org/10.1161/CIRCEP.114.002637.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nayyar S, Wilson L, Ganesan AN, Sullivan T, Kuklik P, Chapman D, et al. High-density mapping of ventricular scar: a comparison of ventricular tachycardia (VT) supporting channels with channels that do not support VT. Circ Arrhythm Electrophysiol. 2014;7(1):90–8.  https://doi.org/10.1161/CIRCEP.113.000882.CrossRefPubMedGoogle Scholar
  42. 42.
    Irie T, Yu R, Bradfield JS, Vaseghi M, Buch EF, Ajijola O, Macias C, Fujimura O, Mandapati R, Boyle NG. Relationship between sinus rhythm late activation zones and critical sites for scar-related ventricular tachycardia: a systematic analysis of isochronal late activation mapping. Circ: Arrhythm Electrophysiol. 2015:CIRCEP. 114.002637.Google Scholar
  43. 43.
    Tung R, Josephson ME, Bradfield JS, Shivkumar K. Directional influences of ventricular activation on myocardial scar characterization: voltage mapping with multiple wavefronts during ventricular tachycardia ablation. Circ Arrhythm Electrophysiol. 2016;9(8):e004155.  https://doi.org/10.1161/CIRCEP.116.004155.CrossRefPubMedGoogle Scholar
  44. 44.
    Paul T, Moak JP, Morris C, Garson A. Epicardial mapping: how to measure local activation? Pacing Clin Electrophysiol. 1990;13(3):285–92.  https://doi.org/10.1111/j.1540-8159.1990.tb02042.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Massé S, Magtibay K, Jackson N, Asta J, Kusha M, Zhang B, et al. Resolving myocardial activation with novel omnipolar electrograms. Circulation: Arrhythmia and Electrophysiology. 2016;9(7):e004107.  https://doi.org/10.1161/CIRCEP.116.004107.PubMedCentralGoogle Scholar
  46. 46.
    Deno DC, Balachandran R, Morgan D, Ahmad F, Massé S, Nanthakumar K. Orientation-independent catheter-based characterization of myocardial activation. IEEE Trans Biomed Eng. 2017;64(5):1067–77.  https://doi.org/10.1109/TBME.2016.2589158.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Arrhythmia Care, Pritzker School of MedicineThe University of Chicago MedicineChicagoUSA

Personalised recommendations