Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78. https://doi.org/10.1038/nrc3181.
PubMed
PubMed Central
Article
CAS
Google Scholar
Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16. https://doi.org/10.1001/jama.2017.7112.
CAS
PubMed
Article
Google Scholar
Cavanagh H, Rogers KM. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered Cancer Clin Pract. 2015;13(1):16. https://doi.org/10.1186/s13053-015-0038-x.
PubMed
PubMed Central
Article
CAS
Google Scholar
Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med. 2008;359(20):2143–53. https://doi.org/10.1056/NEJMra0802968.
CAS
PubMed
Article
Google Scholar
Ovarian Epithelial, Fallopian tube, and primary peritoneal cancer treatment (PDQ(R)): health professional version. PDQ Cancer Information Summaries. Bethesda, 2002.
Friedenson B. The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer. 2007;7(1):152. https://doi.org/10.1186/1471-2407-7-152.
PubMed
PubMed Central
Article
CAS
Google Scholar
Mathew CG. Fanconi anaemia genes and susceptibility to cancer. Oncogene. 2006;25(43):5875–84. https://doi.org/10.1038/sj.onc.1209878.
CAS
PubMed
Article
Google Scholar
Eisinger F, Stoppa-Lyonnet D, Longy M, Kerangueven F, Noguchi T, Bailly C, et al. Germ line mutation at BRCA1 affects the histoprognostic grade in hereditary breast cancer. Cancer Res. 1996;56(3):471–4.
CAS
PubMed
Google Scholar
Karp SE, Tonin PN, Begin LR, Martinez JJ, Zhang JC, Pollak MN, et al. Influence of BRCA1 mutations on nuclear grade and estrogen receptor status of breast carcinoma in Ashkenazi Jewish women. Cancer. 1997;80(3):435–41. https://doi.org/10.1002/(SICI)1097-0142(19970801)80:3<435::AID-CNCR11>3.0.CO;2-Y.
CAS
PubMed
Article
Google Scholar
Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26(26):4282–8. https://doi.org/10.1200/JCO.2008.16.6231.
PubMed
Article
Google Scholar
Evans DG, Lalloo F, Howell S, Verhoef S, Woodward ER, Howell A. Low prevalence of HER2 positivity amongst BRCA1 and BRCA2 mutation carriers and in primary BRCA screens. Breast Cancer Res Treat. 2016;155(3):597–601. https://doi.org/10.1007/s10549-016-3697-z.
CAS
PubMed
Article
Google Scholar
Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, et al. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med. 2002;347(16):1233–41. https://doi.org/10.1056/NEJMoa022152.
PubMed
Article
Google Scholar
Rebbeck TR, Friebel T, Lynch HT, Neuhausen SL, van’t Veer L, Garber JE, et al. Bilateral prophylactic mastectomy reduces breast cancer risk in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol. 2004;22(6):1055–62. https://doi.org/10.1200/JCO.2004.04.188.
PubMed
Article
Google Scholar
American Cancer Society. Cancer Statistics Center: Ovary. https://cancerstatisticscenter.cancer.org/?_ga=2.216272405.2025305630.1511832977-370879628.1511832977#!/cancer-site/Ovary. Accessed 27 Nov 2017.
Couch FJ, Johnson MR, Rabe KG, Brune K, de Andrade M, Goggins M, et al. The prevalence of BRCA2 mutations in familial pancreatic cancer. Cancer Epidemiol Biomark Prev. 2007;16(2):342–6. https://doi.org/10.1158/1055-9965.EPI-06-0783.
CAS
Article
Google Scholar
Hahn SA, Greenhalf B, Ellis I, Sina-Frey M, Rieder H, Korte B, et al. BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst. 2003;95(3):214–21. https://doi.org/10.1093/jnci/95.3.214.
CAS
PubMed
Article
Google Scholar
Hampel H, Bennett RL, Buchanan A, Pearlman R, Wiesner GL, Guideline Development Group ACoMG, et al. A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med. 2015;17(1):70–87. https://doi.org/10.1038/gim.2014.147.
PubMed
Article
Google Scholar
Giri VN, Obeid E, Gross L, Bealin L, Hyatt C, Hegarty SE, et al. Inherited mutations in men undergoing multigene panel testing for prostate cancer: emerging implications for personalized prostate cancer genetic evaluation. JCO Precision Oncol. 2017;1:1–17. https://doi.org/10.1200/po.16.00039.
Google Scholar
Wellons M, Ouyang P, Schreiner PJ, Herrington DM, Vaidya D. Early menopause predicts future coronary heart disease and stroke: the multi-ethnic study of atherosclerosis. Menopause. 2012;19(10):1081–7. https://doi.org/10.1097/gme.0b013e3182517bd0.
PubMed
PubMed Central
Article
Google Scholar
Singh KK, Shukla PC, Quan A, Desjardins JF, Lovren F, Pan Y, et al. BRCA2 protein deficiency exaggerates doxorubicin-induced cardiomyocyte apoptosis and cardiac failure. J Biol Chem. 2012;287(9):6604–14. https://doi.org/10.1074/jbc.M111.292664.
CAS
PubMed
Article
Google Scholar
Pierce LJ, Strawderman M, Narod SA, Oliviotto I, Eisen A, Dawson L, et al. Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol. 2000;18(19):3360–9. https://doi.org/10.1200/JCO.2000.18.19.3360.
CAS
PubMed
Article
Google Scholar
Jethwa KR, Kahila MM, Whitaker TJ, Harmsen WS, Corbin KS, Park SS, et al. Immediate tissue expander or implant-based breast reconstruction does not compromise the oncologic delivery of post-mastectomy radiotherapy (PMRT). Breast Cancer Res Treat. 2017;164(1):237–44. https://doi.org/10.1007/s10549-017-4241-5.
CAS
PubMed
Article
Google Scholar
Clarke M, Collins R, Darby S, Davies C, Elphinstone P, Evans V, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–106. https://doi.org/10.1016/S0140-6736(05)67887-7.
CAS
PubMed
Article
Google Scholar
van den Bogaard VA, Ta BD, van der Schaaf A, Bouma AB, Middag AM, Bantema-Joppe EJ, et al. Validation and modification of a prediction model for acute cardiac events in patients with breast cancer treated with radiotherapy based on three-dimensional dose distributions to cardiac substructures. J Clin Oncol. 2017;35(11):1171–8. https://doi.org/10.1200/JCO.2016.69.8480.
PubMed
PubMed Central
Article
Google Scholar
Mutter RW, Remmes NB, Kahila MM, Hoeft KA, Pafundi DH, Zhang Y, et al. Initial clinical experience of postmastectomy intensity modulated proton therapy in patients with breast expanders with metallic ports. Pract Radiat Oncol. 2017;7(4):e243–e52. https://doi.org/10.1016/j.prro.2016.12.002.
PubMed
Article
Google Scholar
Correa CR, Litt HI, Hwang WT, Ferrari VA, Solin LJ, Harris EE. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol. 2007;25(21):3031–7. https://doi.org/10.1200/JCO.2006.08.6595.
PubMed
Article
Google Scholar
Carmel RJ, Kaplan HS. Mantle irradiation in Hodgkin's disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976;37(6):2813–25. https://doi.org/10.1002/1097-0142(197606)37:6<2813::AID-CNCR2820370637>3.0.CO;2-S.
CAS
PubMed
Article
Google Scholar
Ahmad SS, Duke S, Jena R, Williams MV, Burnet NG. Advances in radiotherapy. BMJ. 2012;345(dec04 1):e7765. https://doi.org/10.1136/bmj.e7765.
PubMed
Article
CAS
Google Scholar
MacDonald SM, Patel SA, Hickey S, Specht M, Isakoff SJ, Gadd M, et al. Proton therapy for breast cancer after mastectomy: early outcomes of a prospective clinical trial. Int J Radiat Oncol Biol Phys. 2013;86(3):484–90. https://doi.org/10.1016/j.ijrobp.2013.01.038.
PubMed
Article
Google Scholar
Ruddy KJ, Van Houten HK, Sangaralingham LR, Freedman RA, Thompson CA, Hashmi SK, et al. Impact of treatment regimen on acute care use during and after adjuvant chemotherapy for early-stage breast cancer. Breast Cancer Res Treat. 2017;164(3):515–25. https://doi.org/10.1007/s10549-017-4280-y.
PubMed
Article
Google Scholar
Jiang T, Shi W, Wali VB, Pongor LS, Li C, Lau R, et al. Predictors of chemosensitivity in triple negative breast cancer: an integrated genomic analysis. PLoS Med. 2016;13(12):e1002193. https://doi.org/10.1371/journal.pmed.1002193.
PubMed
PubMed Central
Article
Google Scholar
Markman M. Pegylted liposomal doxorubicin: appraisal of its current role in the management of epithelial ovarian cancer. Cancer Manag Res. 2011;3:219–25. https://doi.org/10.2147/CMR.S15558.
CAS
PubMed
PubMed Central
Article
Google Scholar
Moazeni S, Cadeiras M, Yang EH, Deng MC, Nguyen KL. Anthracycline induced cardiotoxicity: biomarkers and “omics” technology in the era of patient specific care. Clin Transl Med. 2017;6(1):17. https://doi.org/10.1186/s40169-017-0148-3.
PubMed
PubMed Central
Article
Google Scholar
Gulati G, Heck SL, Ree AH, Hoffmann P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 x 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80. https://doi.org/10.1093/eurheartj/ehw022.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tashakori Beheshti A, Mostafavi Toroghi H, Hosseini G, Zarifian A, Homaei Shandiz F, Fazlinezhad A. Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial. Cardiology. 2016;134(1):47–53. https://doi.org/10.1159/000442722.
CAS
PubMed
Article
Google Scholar
Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20. https://doi.org/10.1016/j.jacc.2009.03.095.
CAS
PubMed
Article
Google Scholar
Minotti G. Pharmacology at work for cardio-oncology: ranolazine to treat early cardiotoxicity induced by antitumor drugs. J Pharmacol Exp Ther. 2013;346(3):343–9. https://doi.org/10.1124/jpet.113.204057.
CAS
PubMed
Article
Google Scholar
Oleksowicz L, Bruckner HW. Prophylaxis of 5-fluorouracil-induced coronary vasospasm with calcium channel blockers. Am J Med. 1988;85(5):750–1. https://doi.org/10.1016/S0002-9343(88)80268-7.
CAS
PubMed
Article
Google Scholar
Eskilsson J, Albertsson M. Failure of preventing 5-fluorouracil cardiotoxicity by prophylactic treatment with verapamil. Acta Oncol. 1990;29(8):1001–3. https://doi.org/10.3109/02841869009091790.
CAS
PubMed
Article
Google Scholar
Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25. https://doi.org/10.1056/NEJMoa1011923.
CAS
PubMed
Article
Google Scholar
Carnevale J, Ashworth A. Assessing the significance of BRCA1 and BRCA2 mutations in pancreatic cancer. J Clin Oncol. 2015;33(28):3080–1. https://doi.org/10.1200/JCO.2015.61.6961.
CAS
PubMed
Article
Google Scholar
El-Awady el SE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011;650(1):335–41. https://doi.org/10.1016/j.ejphar.2010.09.085.
Article
CAS
Google Scholar
Dieckmann KP, Struss WJ, Budde U. Evidence for acute vascular toxicity of cisplatin-based chemotherapy in patients with germ cell tumour. Anticancer Res. 2011;31(12):4501–5.
CAS
PubMed
Google Scholar
Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. https://doi.org/10.1056/NEJMoa1706450.
CAS
PubMed
Article
Google Scholar
Guglin M, Munster P, Fink A, Krischer J. Lisinopril or Coreg CR in reducing cardiotoxicity in women with breast cancer receiving trastuzumab: a rationale and design of a randomized clinical trial. Am Heart J. 2017;188:87–92. https://doi.org/10.1016/j.ahj.2017.03.010.
CAS
PubMed
Article
Google Scholar
Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol. 2014;15(8):852–61. https://doi.org/10.1016/S1470-2045(14)70228-1.
CAS
PubMed
Article
Google Scholar
Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10106):1949–61. https://doi.org/10.1016/S0140-6736(17)32440-6.
CAS
PubMed
Article
Google Scholar
Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017;18(1):75–87. https://doi.org/10.1016/S1470-2045(16)30559-9.
CAS
PubMed
Article
Google Scholar
Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments. Nat Rev Cardiol. 2015;12(9):547–58. https://doi.org/10.1038/nrcardio.2015.65.
CAS
PubMed
Article
Google Scholar
Angsutararux P, Luanpitpong S, Issaragrisil S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Med Cell Longev. 2015;2015:795602. https://doi.org/10.1155/2015/795602.
Article
Google Scholar
Jezovnik MP. Oxidative stress and atherosclerosis. E J Cardiol Practice. 2007;6(6).
Singh KK, Shukla PC, Yanagawa B, Quan A, Lovren F, Pan Y, et al. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1. J Thorac Cardiovasc Surg. 2013;146(3):702–9. https://doi.org/10.1016/j.jtcvs.2012.12.046.
CAS
PubMed
Article
Google Scholar
Drooger J, Akdeniz D, Pignol JP, Koppert LB, McCool D, Seynaeve CM, et al. Adjuvant radiotherapy for primary breast cancer in BRCA1 and BRCA2 mutation carriers and risk of contralateral breast cancer with special attention to patients irradiated at younger age. Breast Cancer Res Treat. 2015;154(1):171–80. https://doi.org/10.1007/s10549-015-3597-7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hartmann LC, Schaid DJ, Woods JE, Crotty TP, Myers JL, Arnold PG, et al. Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med. 1999;340(2):77–84. https://doi.org/10.1056/NEJM199901143400201.
CAS
PubMed
Article
Google Scholar
Shaitelman SF, Howell RM, Smith BD. Effects of smoking on late toxicity from breast radiation. J Clin Oncol. 2017;35(15):1633–5. https://doi.org/10.1200/JCO.2017.72.2660.
PubMed
Article
Google Scholar
Taylor C, Correa C, Duane FK, Aznar MC, Anderson SJ, Bergh J, et al. Estimating the risks of breast cancer radiotherapy: evidence from modern radiation doses to the lungs and heart and from previous randomized trials. J Clin Oncol. 2017;35(15):1641–9. https://doi.org/10.1200/JCO.2016.72.0722.
PubMed
PubMed Central
Article
Google Scholar
Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98. https://doi.org/10.1056/NEJMoa1209825.
CAS
PubMed
Article
Google Scholar
• Cuomo JR, Sharma GK, Conger PD, Weintraub NL. Novel concepts in radiation-induced cardiovascular disease. World J Cardiol. 2016;8(9):504–19. https://doi.org/10.4330/wjc.v8.i9.504. This article summarizes the most common manifestations of radiation-induced heart disease as well as methods for prevention, screening and detection, and treatment.
PubMed
PubMed Central
Article
Google Scholar
Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65. https://doi.org/10.1016/j.ijrobp.2009.09.064.
PubMed
PubMed Central
Article
Google Scholar
McGale P, Darby SC, Hall P, Adolfsson J, Bengtsson NO, Bennet AM, et al. Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol. 2011;100(2):167–75. https://doi.org/10.1016/j.radonc.2011.06.016.
PubMed
Article
Google Scholar
Clare GC, Troughton RW. Management of constrictive pericarditis in the 21st century. Curr Treat Options Cardiovasc Med. 2007;9(6):436–42. https://doi.org/10.1007/s11936-007-0038-x.
PubMed
Article
Google Scholar
Cutter DJ, Schaapveld M, Darby SC, Hauptmann M, van Nimwegen FA, Krol AD, et al. Risk of valvular heart disease after treatment for Hodgkin lymphoma. J Natl Cancer Inst. 2015;107(4). https://doi.org/10.1093/jnci/djv008.
Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96. https://doi.org/10.1161/CIRCULATIONAHA.116.025434.
PubMed
Article
Google Scholar
Writing Committee M, Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327. https://doi.org/10.1161/CIR.0b013e31829e8776.
Article
Google Scholar
Thorsen LB, Offersen BV, Dano H, Berg M, Jensen I, Pedersen AN, et al. DBCG-IMN: a population-based cohort study on the effect of internal mammary node irradiation in early node-positive breast cancer. J Clin Oncol. 2016;34(4):314–20. https://doi.org/10.1200/JCO.2015.63.6456.
PubMed
Article
Google Scholar
Yeboa DN, Evans SB. Contemporary breast radiotherapy and cardiac toxicity. Semin Radiat Oncol. 2016;26(1):71–8. https://doi.org/10.1016/j.semradonc.2015.09.003.
PubMed
Article
Google Scholar
Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7. https://doi.org/10.7326/0003-4819-91-5-710.
Article
Google Scholar
Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79. https://doi.org/10.1002/cncr.11407.
CAS
PubMed
Article
Google Scholar
Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84. https://doi.org/10.1056/NEJM200004133421502.
CAS
PubMed
Article
Google Scholar
Hequet O, Le QH, Moullet I, Pauli E, Salles G, Espinouse D, et al. Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol. 2004;22(10):1864–71. https://doi.org/10.1200/JCO.2004.06.033.
CAS
PubMed
Article
Google Scholar
McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0.
CAS
PubMed
PubMed Central
Article
Google Scholar
Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, et al. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):vii155–66. https://doi.org/10.1093/annonc/mds293.
PubMed
Article
Google Scholar
Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10(1):337. https://doi.org/10.1186/1471-2407-10-337.
PubMed
PubMed Central
Article
CAS
Google Scholar
• Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131(22):1981–8. https://doi.org/10.1161/CIRCULATIONAHA.114.013777. This prospective study evaluated the incidence, onset, clinical risks, and reversiility of cardiotoxicity from anthracyclines. The study determined that the majority of LVEF dysfunction develops within the first year following treatment, cumulative anthracycline dose and LVEF at completion of therapy are important clinical risk factors, and anthracycline-induced cardiotoxicity appears to be at least partially reversible.
CAS
PubMed
Article
Google Scholar
Cardinale D, Sandri MT, Martinoni A, Borghini E, Civelli M, Lamantia G, et al. Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol. 2002;13(5):710–5. https://doi.org/10.1093/annonc/mdf170.
CAS
PubMed
Article
Google Scholar
Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54. https://doi.org/10.1161/01.CIR.0000130926.51766.CC.
CAS
PubMed
Article
Google Scholar
Sciences WFUH. Preventing anthracycline cardiovascular toxicity with statins (PREVENT). NIH U.S. National Library of Medicine, Clinicaltrials.gov. 2013. https://clinicaltrials.gov/ct2/show/NCT01988571.
Rosa GM, Gigli L, Tagliasacchi MI, Di Iorio C, Carbone F, Nencioni A, et al. Update on cardiotoxicity of anti-cancer treatments. Eur J Clin Investig. 2016;46(3):264–84. https://doi.org/10.1111/eci.12589.
Article
Google Scholar
Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al. A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr. 1993;15:117–30.
Google Scholar
De Gennaro L, Brunetti ND, Resta M, Rutigliano D, Tarantini L, Caldarola P. Cardiac arrest and ventricular fibrillation in a young man treated with capecitabine: case report and literature review. Int J Cardiol. 2016;220:280–3. https://doi.org/10.1016/j.ijcard.2016.06.117.
PubMed
Article
Google Scholar
Layoun ME, Wickramasinghe CD, Peralta MV, Yang EH. Fluoropyrimidine-induced cardiotoxicity: manifestations, mechanisms, and management. Curr Oncol Rep. 2016;18(6):35. https://doi.org/10.1007/s11912-016-0521-1.
PubMed
Article
CAS
Google Scholar
Polk A, Shahmarvand N, Vistisen K, Vaage-Nilsen M, Larsen FO, Schou M, et al. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity: a retrospective study of 452 consecutive patients with metastatic breast cancer. BMJ Open. 2016;6(10):e012798. https://doi.org/10.1136/bmjopen-2016-012798.
PubMed
PubMed Central
Article
Google Scholar
Polk A, Vaage-Nilsen M, Vistisen K, Nielsen DL. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84. https://doi.org/10.1016/j.ctrv.2013.03.005.
CAS
PubMed
Article
Google Scholar
Schober C, Papageorgiou E, Harstrick A, Bokemeyer C, Mugge A, Stahl M, et al. Cardiotoxicity of 5-fluorouracil in combination with folinic acid in patients with gastrointestinal cancer. Cancer. 1993;72(7):2242–7. https://doi.org/10.1002/1097-0142(19931001)72:7<2242::AID-CNCR2820720730>3.0.CO;2-E.
CAS
PubMed
Article
Google Scholar
Collins C, Weiden PL. Cardiotoxicity of 5-fluorouracil. Cancer Treat Rep. 1987;71(7–8):733–6.
CAS
PubMed
Google Scholar
Jensen SA, Sorensen JB. Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol. 2006;58(4):487–93. https://doi.org/10.1007/s00280-005-0178-1.
CAS
PubMed
Article
Google Scholar
Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol. 2002;20(3):719–26. https://doi.org/10.1200/JCO.2002.20.3.719.
CAS
PubMed
Article
Google Scholar
van Dalen EC, van der Pal HJ, Kok WE, Caron HN, Kremer LC. Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer. 2006;42(18):3191–8. https://doi.org/10.1016/j.ejca.2006.08.005.
PubMed
Article
CAS
Google Scholar
Suter TM, Cook-Bruns N, Barton C. Cardiotoxicity associated with trastuzumab (Herceptin) therapy in the treatment of metastatic breast cancer. Breast. 2004;13(3):173–83. https://doi.org/10.1016/j.breast.2003.09.002.
CAS
PubMed
Article
Google Scholar
Romond EH, Jeong JH, Rastogi P, Swain SM, Geyer CE Jr, Ewer MS, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2012;30(31):3792–9. https://doi.org/10.1200/JCO.2011.40.0010.
CAS
PubMed
PubMed Central
Article
Google Scholar
Advani PP, Ballman KV, Dockter TJ, Colon-Otero G, Perez EA. Long-term cardiac safety analysis of NCCTG N9831 (alliance) adjuvant trastuzumab trial. J Clin Oncol. 2016;34(6):581–7. https://doi.org/10.1200/JCO.2015.61.8413.
CAS
PubMed
Article
Google Scholar
Cameron D, Piccart-Gebhart MJ, Gelber RD, Procter M, Goldhirsch A, de Azambuja E, et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin adjuvant (HERA) trial. Lancet. 2017;389(10075):1195–205. https://doi.org/10.1016/S0140-6736(16)32616-2.
CAS
PubMed
Article
Google Scholar
Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S, et al. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail. 2012;14(2):130–7. https://doi.org/10.1093/eurjhf/hfr165.
CAS
PubMed
Article
Google Scholar
Odiete O, Hill MF, Sawyer DB. Neuregulin in cardiovascular development and disease. Circ Res. 2012;111(10):1376–85. https://doi.org/10.1161/CIRCRESAHA.112.267286.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sendur MA, Aksoy S, Altundag K. Cardiotoxicity of novel HER2-targeted therapies. Curr Med Res Opin. 2013;29(8):1015–24. https://doi.org/10.1185/03007995.2013.807232.
CAS
PubMed
Article
Google Scholar
de Azambuja E, Procter MJ, van Veldhuisen DJ, Agbor-Tarh D, Metzger-Filho O, Steinseifer J, et al. Trastuzumab-associated cardiac events at 8 years of median follow-up in the Herceptin Adjuvant trial (BIG 1-01). J Clin Oncol. 2014;32(20):2159–65. https://doi.org/10.1200/JCO.2013.53.9288.
PubMed
Article
CAS
Google Scholar
Dang C, Guo H, Najita J, Yardley D, Marcom K, Albain K, et al. Cardiac outcomes of patients receiving adjuvant weekly paclitaxel and trastuzumab for node-negative, ERBB2-positive breast cancer. JAMA Oncol. 2016;2(1):29–36. https://doi.org/10.1001/jamaoncol.2015.3709.
PubMed
PubMed Central
Article
Google Scholar
Swain SM, Ewer MS, Cortes J, Amadori D, Miles D, Knott A, et al. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: a randomized, double-blind, placebo-controlled phase III study. Oncologist. 2013;18(3):257–64. https://doi.org/10.1634/theoncologist.2012-0448.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yu AF, Yadav NU, Eaton AA, Lung BY, Thaler HT, Liu JE, et al. Continuous trastuzumab therapy in breast cancer patients with asymptomatic left ventricular dysfunction. Oncologist. 2015;20(10):1105–10. https://doi.org/10.1634/theoncologist.2015-0125.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lynce F, Barac A, Tan MT, Asch FM, Smith KL, Dang C, et al. SAFE-HEaRt: rationale and design of a pilot study investigating cardiac safety of HER2 targeted therapy in patients with HER2-positive breast cancer and reduced left ventricular function. Oncologist. 2017;22(5):518–25. https://doi.org/10.1634/theoncologist.2016-0412.
CAS
PubMed
Article
Google Scholar
Witteles RM. Biomarkers as predictors of cardiac toxicity from targeted cancer therapies. J Card Fail. 2016;22(6):459–64. https://doi.org/10.1016/j.cardfail.2016.03.016.
CAS
PubMed
Article
Google Scholar
Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang T, et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J Am Coll Cardiol. 2011;57(22):2263–70. https://doi.org/10.1016/j.jacc.2010.11.063.
CAS
PubMed
Article
Google Scholar
Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7. https://doi.org/10.1200/JCO.2016.68.7830.
CAS
PubMed
Article
Google Scholar
Boekhout AH, Gietema JA, Milojkovic Kerklaan B, van Werkhoven ED, Altena R, Honkoop A, et al. Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncol. 2016;2(8):1030–7. https://doi.org/10.1001/jamaoncol.2016.1726.
PubMed
Article
Google Scholar
Meattini I, Curigliano G, Terziani F, Becherini C, Airoldi M, Allegrini G, et al. SAFE trial: an ongoing randomized clinical study to assess the role of cardiotoxicity prevention in breast cancer patients treated with anthracyclines with or without trastuzumab. Med Oncol. 2017;34(5):75. https://doi.org/10.1007/s12032-017-0938-x.
PubMed
Article
CAS
Google Scholar
Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8. https://doi.org/10.1126/science.aam7344.
CAS
PubMed
Article
Google Scholar
Livraghi L, Garber JE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015;13(1):188. https://doi.org/10.1186/s12916-015-0425-1.
PubMed
PubMed Central
Article
CAS
Google Scholar
Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R, et al. DNA-repair defects and Olaparib in metastatic prostate cancer. N Engl J Med. 2015;373(18):1697–708. https://doi.org/10.1056/NEJMoa1506859.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375(22):2154–64. https://doi.org/10.1056/NEJMoa1611310.
CAS
PubMed
Article
Google Scholar
Honrado E, Benitez J, Palacios J. Histopathology of BRCA1- and BRCA2-associated breast cancer. Crit Rev Oncol Hematol. 2006;59(1):27–39. https://doi.org/10.1016/j.critrevonc.2006.01.006.
PubMed
Article
Google Scholar
Daly MBPR, Berry M, Buys SS, Farmer M, Friedman S, Garber JE. NCCN Clinical Practice Guidelines Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 1.2018 ed. NCCN.org 2017.
Francis PA, Regan MM, Fleming GF. Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med. 2015;372(17):1673–4. https://doi.org/10.1056/NEJMc1502618.
PubMed
Article
Google Scholar
Arimidex TAoiCTG, Buzdar A, Howell A, Cuzick J, Wale C, Distler W, et al. Comprehensive side-effect profile of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: long-term safety analysis of the ATAC trial. Lancet Oncol. 2006;7(8):633–43. https://doi.org/10.1016/S1470-2045(06)70767-7.
Article
CAS
Google Scholar
Breast International Group 1–98 Collaborative G, Thurlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–57. https://doi.org/10.1056/NEJMoa052258.
Article
Google Scholar
• Khosrow-Khavar F, Filion KB, Al-Qurashi S, Torabi N, Bouganim N, Suissa S, et al. Cardiotoxicity of aromatase inhibitors and tamoxifen in postmenopausal women with breast cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Oncol. 2017;28(3):487–96. https://doi.org/10.1093/annonc/mdw673. This systematic review and meta-analysis evaluated cardiovascular risks associated with aromatase inhibitors compared to tamoxifen and determined the increased risk associated with aromatase inhibitors is more likely due to cardioprotective effects of tamoxifen.
CAS
PubMed
Google Scholar
Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–75. https://doi.org/10.1001/jama.2010.1237.
CAS
PubMed
PubMed Central
Article
Google Scholar
• Rocca WA, Gazzuola-Rocca L, Smith CY, Grossardt BR, Faubion SS, Shuster LT, et al. Accelerated accumulation of multimorbidity after bilateral oophorectomy: a population-based cohort study. Mayo Clin Proc. 2016;91(11):1577–89. https://doi.org/10.1016/j.mayocp.2016.08.002. This large population-based cohort study evaluated the risk of development of multiple medical conditions following oophorectomy and determined that oophorectomy is associated with higher risk of multimorbidity.
PubMed
PubMed Central
Article
Google Scholar
Parker WH, Broder MS, Chang E, Feskanich D, Farquhar C, Liu Z, et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet Gynecol. 2009;113(5):1027–37. https://doi.org/10.1097/AOG.0b013e3181a11c64.
PubMed
PubMed Central
Article
Google Scholar
Ingelsson E, Lundholm C, Johansson AL, Altman D. Hysterectomy and risk of cardiovascular disease: a population-based cohort study. Eur Heart J. 2011;32(6):745–50. https://doi.org/10.1093/eurheartj/ehq477.
PubMed
Article
Google Scholar
Parker WH, Feskanich D, Broder MS, Chang E, Shoupe D, Farquhar CM, et al. Long-term mortality associated with oophorectomy compared with ovarian conservation in the nurses’ health study. Obstet Gynecol. 2013;121(4):709–16. https://doi.org/10.1097/AOG.0b013e3182864350.
PubMed
PubMed Central
Article
Google Scholar
Matthews KA, Gibson CJ, El Khoudary SR, Thurston RC. Changes in cardiovascular risk factors by hysterectomy status with and without oophorectomy: study of women’s health across the nation. J Am Coll Cardiol. 2013;62(3):191–200. https://doi.org/10.1016/j.jacc.2013.04.042.
PubMed
PubMed Central
Article
Google Scholar
Rivera CM, Grossardt BR, Rhodes DJ, Brown RD Jr, Roger VL, Melton LJ 3rd, et al. Increased cardiovascular mortality after early bilateral oophorectomy. Menopause. 2009;16(1):15–23. https://doi.org/10.1097/gme.0b013e31818888f7.
PubMed
PubMed Central
Article
Google Scholar
Harmsen MG, Arts-de Jong M, Hoogerbrugge N, Maas AH, Prins JB, Bulten J, et al. Early salpingectomy (TUbectomy) with delayed oophorectomy to improve quality of life as alternative for risk-reducing salpingo-oophorectomy in BRCA1/2 mutation carriers (TUBA study): a prospective non-randomised multicentre study. BMC Cancer. 2015;15(1):593. https://doi.org/10.1186/s12885-015-1597-y.
PubMed
PubMed Central
Article
CAS
Google Scholar
•• Armenian SH, Lacchetti C, Lenihan D. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline summary. J Oncol Pract. 2017;13(4):270−+. https://doi.org/10.1200/Jop.2016.018770. This article identifies individuals at increased risk for cardiovascular disease and provides recommended screening guidelines.
PubMed
Article
Google Scholar
Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, Alfano CM. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(11):815–40. https://doi.org/10.1093/jnci/djs207.
PubMed
PubMed Central
Article
Google Scholar
Lemanne D, Cassileth B, Gubili J. The role of physical activity in cancer prevention, treatment, recovery, and survivorship. Oncology (Williston Park). 2013;27(6):580–5.
Google Scholar
de Rezende LF, Rodrigues Lopes M, Rey-Lopez JP, Matsudo VK, Luiz Odo C. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):e105620. https://doi.org/10.1371/journal.pone.0105620.
PubMed
PubMed Central
Article
CAS
Google Scholar
Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74. https://doi.org/10.3322/caac.21142.
PubMed
Article
Google Scholar
Ritvo P, Obadia M, Santa Mina D, Alibhai S, Sabiston C, Oh P, et al. Smartphone-enabled health coaching intervention (iMOVE) to promote long-term maintenance of physical activity in breast cancer survivors: protocol for a feasibility pilot randomized controlled trial. JMIR Res Protoc. 2017;6(8):e165. https://doi.org/10.2196/resprot.6615.
PubMed
PubMed Central
Article
Google Scholar
Hewitt MGS, Stoval E. In: Council IoMaNR, editor. From cancer patient to cancer survivor: lost in transition. Washington, D.C: The National Academies Press; 2006.
Google Scholar
Hoerger M, Epstein RM, Winters PC, Fiscella K, Duberstein PR, Gramling R, et al. Values and options in cancer care (VOICE): study design and rationale for a patient-centered communication and decision-making intervention for physicians, patients with advanced cancer, and their caregivers. BMC Cancer. 2013;13(1):188. https://doi.org/10.1186/1471-2407-13-188.
PubMed
PubMed Central
Article
Google Scholar
Arora NK, Weaver KE, Clayman ML, Oakley-Girvan I, Potosky AL. Physicians' decision-making style and psychosocial outcomes among cancer survivors. Patient Educ Couns. 2009;77(3):404–12. https://doi.org/10.1016/j.pec.2009.10.004.
PubMed
PubMed Central
Article
Google Scholar
Davis SW, Oakley-Girvan I. Achieving value in mobile health applications for cancer survivors. J Cancer Surviv. 2017;11(4):498–504. https://doi.org/10.1007/s11764-017-0608-1.
PubMed
Article
Google Scholar
Baseman J, Revere D, Baldwin LM. A mobile breast cancer survivorship care app: pilot study. JMIR Cancer. 2017;3(2):e14. https://doi.org/10.2196/cancer.8192.
PubMed
PubMed Central
Article
Google Scholar