Skip to main content

Innovation in 3D Echocardiographic Imaging

Abstract

Purpose of review

The purpose of this review is to detail three-dimensional echocardiographic (3DE) innovations in pre-surgical planning of congenital heart disease, guidance of catheter interventions such as fusion imaging, and functional assessment of patients with congenital heart disease.

Recent findings

Innovations in 3DE have helped us delineate the details of atrioventricular valve function and understand the mechanism of atrioventricular valve failure in patients with atrioventricular septal defect and single ventricle post repair. Advancement in holographic display of 3D datasets allows for better manipulation of 3D images in three dimensions and better understanding of anatomic relationships. 3DE with fusion imaging reduces radiation in catheter interventions and provides presentations of 3DE images in the similar fashion as the fluoroscopic images to improve communication between cardiologists. Lastly, 3DE allows for quantitative ventricular volumetric and functional assessment.

Summary

Recent innovations in 3DE allow for pre-surgical planning for congenital heart disease, reduce radiation using fusion imaging in catheter interventions, and enable accurate assessment of ventricular volume and function without geometric assumptions.

This is a preview of subscription content, access via your institution.

Fig. 1

References and Recommended Reading

Papers of particular interest published recently, have been highlighted as: • Of importance •• Of major importance

  1. Simpson JM. Real-time three-dimensional echocardiography of congenital heart disease using a high frequency paediatric matrix transducer. Eur J Echocardiogr : J Working Group Echocardiogr Eur Soc Cardiol. 2008;9(2):222–4.

    Google Scholar 

  2. Acar P, Abadir S, Paranon S, Latcu G, Grosjean J, Dulac Y. Live 3D echocardiography with the pediatric matrix probe. Echocardiography. 2007;24(7):750–5. https://doi.org/10.1111/j.1540-8175.2007.00485.x.

    Article  PubMed  Google Scholar 

  3. •• Simpson J, Lopez L, Acar P, Friedberg MK, Khoo NS, Ko HH, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2017;30(1):1–27. An important review of three dimensional echocardiography use in congenital heart disease. https://doi.org/10.1016/j.echo.2016.08.022.

    Article  Google Scholar 

  4. •• Kutty S, Colen TM, Smallhorn JF. Three-dimensional echocardiography in the assessment of congenital mitral valve disease. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2014;27(2):142–54. An important summary of three dimensional echocardiography in congenital mitral valve disease. https://doi.org/10.1016/j.echo.2013.11.011.

    Article  Google Scholar 

  5. Hoohenkerk GJ, Bruggemans EF, Rijlaarsdam M, Schoof PH, Koolbergen DR, Hazekamp MG. More than 30 years’ experience with surgical correction of atrioventricular septal defects. Ann Thorac Surg. 2010;90(5):1554–61. https://doi.org/10.1016/j.athoracsur.2010.06.008.

    Article  PubMed  Google Scholar 

  6. Stulak JM, Burkhart HM, Dearani JA, Cetta F, Barnes RD, Connolly HM, et al. Reoperations after repair of partial atrioventricular septal defect: a 45-year single-center experience. Ann Thorac Surg. 2010;89(5):1352–9. https://doi.org/10.1016/j.athoracsur.2010.01.018.

    Article  PubMed  Google Scholar 

  7. Stulak JM, Burkhart HM, Dearani JA. Reoperations after repair of partial and complete atrioventricular septal defect. World J Pediatr Congenit Heart Surg. 2010;1(1):97–104. https://doi.org/10.1177/2150135110362453.

    Article  PubMed  Google Scholar 

  8. Takahashi K, Mackie AS, Thompson R, Al-Naami G, Inage A, Rebeyka IM, et al. Quantitative real-time three-dimensional echocardiography provides new insight into the mechanisms of mitral valve regurgitation post-repair of atrioventricular septal defect. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2012;25(11):1231–44. https://doi.org/10.1016/j.echo.2012.08.011.

    Article  Google Scholar 

  9. Takahashi K, Mackie AS, Rebeyka IM, Ross DB, Robertson M, Dyck JD, et al. Two-dimensional versus transthoracic real-time three-dimensional echocardiography in the evaluation of the mechanisms and sites of atrioventricular valve regurgitation in a congenital heart disease population. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2010;23(7):726–34. https://doi.org/10.1016/j.echo.2010.04.017.

    Article  Google Scholar 

  10. Takahashi K, Guerra V, Roman KS, Nii M, Redington A, Smallhorn JF. Three-dimensional echocardiography improves the understanding of the mechanisms and site of left atrioventricular valve regurgitation in atrioventricular septal defect. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2006;19(12):1502–10. https://doi.org/10.1016/j.echo.2006.07.011.

    Article  Google Scholar 

  11. Nii M, Roman KS, Macgowan CK, Smallhorn JF. Insight into normal mitral and tricuspid annular dynamics in pediatrics: a real-time three-dimensional echocardiographic study. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2005;18(8):805–14. https://doi.org/10.1016/j.echo.2005.01.014.

    Article  Google Scholar 

  12. Nii M, Guerra V, Roman KS, Macgowan CK, Smallhorn JF. Three-dimensional tricuspid annular function provides insight into the mechanisms of tricuspid valve regurgitation in classic hypoplastic left heart syndrome. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2006;19(4):391–402. https://doi.org/10.1016/j.echo.2005.10.025.

    Article  Google Scholar 

  13. • Colen T, Smallhorn JF. Three-dimensional echocardiography for the assessment of atrioventricular valves in congenital heart disease: past, present and future. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2015;18(1):62–71. A summary of atrioventricular function in congenital heart disease. https://doi.org/10.1053/j.pcsu.2015.01.003.

    Article  PubMed  Google Scholar 

  14. Barber G, Helton JG, Aglira BA, Chin AJ, Murphy JD, Pigott JD, et al. The significance of tricuspid regurgitation in hypoplastic left-heart syndrome. Am Heart J. 1988;116(6 Pt 1):1563–7. https://doi.org/10.1016/0002-8703(88)90744-2.

    CAS  Article  PubMed  Google Scholar 

  15. •• Kutty S, Colen T, Thompson RB, Tham E, Li L, Vijarnsorn C, et al. Tricuspid regurgitation in hypoplastic left heart syndrome: mechanistic insights from 3-dimensional echocardiography and relationship with outcomes. Circulation Cardiovascular imaging. 2014;7(5):765–72. An important study in the understanding of tricuspid valve function in single ventricle and adaptation of the tricuspid valve between stages of the single ventricle surgeries. https://doi.org/10.1161/CIRCIMAGING.113.001161.

    Article  PubMed  Google Scholar 

  16. Ghanayem NS, Allen KR, Tabbutt S, Atz AM, Clabby ML, Cooper DS, et al. Interstage mortality after the Norwood procedure: results of the multicenter Single Ventricle Reconstruction trial. J Thorac Cardiovasc Surg. 2012;144(4):896–906. https://doi.org/10.1016/j.jtcvs.2012.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Colen TM, Khoo NS, Ross DB, Smallhorn JF. Partial zone of apposition closure in atrioventricular septal defect: are papillary muscles the clue. Ann Thorac Surg. 2013;96(2):637–43. https://doi.org/10.1016/j.athoracsur.2013.03.071.

    Article  PubMed  Google Scholar 

  18. Takahashi K, Inage A, Rebeyka IM, Ross DB, Thompson RB, Mackie AS, et al. Real-time 3-dimensional echocardiography provides new insight into mechanisms of tricuspid valve regurgitation in patients with hypoplastic left heart syndrome. Circulation. 2009;120(12):1091–8. https://doi.org/10.1161/CIRCULATIONAHA.108.809566.

    CAS  Article  PubMed  Google Scholar 

  19. Tsang VT, Raja SG. Tricuspid valve repair in single ventricle: timing and techniques. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2012;15(1):61–8. https://doi.org/10.1053/j.pcsu.2012.01.010.

    Article  PubMed  Google Scholar 

  20. Bruckheimer E, Rotschild C, Dagan T, Amir G, Kaufman A, Gelman S, et al. Computer-generated real-time digital holography: first time use in clinical medical imaging. Eur Heart J Cardiovasc Imaging. 2016;17(8):845–9. https://doi.org/10.1093/ehjci/jew087.

    Article  PubMed  Google Scholar 

  21. •• Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PC, Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2015;28(4):392–7. A study of using three dimensional echocardiography datasets for 3D printing. https://doi.org/10.1016/j.echo.2014.12.016.

    Article  Google Scholar 

  22. Costello JP, Olivieri LJ, Su L, Krieger A, Alfares F, Thabit O, et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10(2):185–90. https://doi.org/10.1111/chd.12238.

    Article  PubMed  Google Scholar 

  23. Bramlet M, Olivieri L, Farooqi K, Ripley B, Coakley M. Impact of three-dimensional printing on the study and treatment of congenital heart disease. Circ Res. 2017;120(6):904–7. https://doi.org/10.1161/CIRCRESAHA.116.310546.

    CAS  Article  PubMed  Google Scholar 

  24. Taniguchi M, Akagi T, Kijima Y, Sano S. Clinical advantage of real-time three-dimensional transesophageal echocardiography for transcatheter closure of multiple atrial septal defects. Int J Cardiovasc Imaging. 2013;29(6):1273–80. https://doi.org/10.1007/s10554-013-0212-z.

    Article  PubMed  Google Scholar 

  25. Bhaya M, Mutluer FO, Mahan E, Mahan L, Hsiung MC, Yin WH, et al. Live/real time three-dimensional transesophageal echocardiography in percutaneous closure of atrial septal defects. Echocardiography. 2013;30(3):345–53. https://doi.org/10.1111/echo.12106.

    Article  PubMed  Google Scholar 

  26. Perk G, Lang RM, Garcia-Fernandez MA, Lodato J, Sugeng L, Lopez J, et al. Use of real time three-dimensional transesophageal echocardiography in intracardiac catheter based interventions. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2009;22(8):865–82. https://doi.org/10.1016/j.echo.2009.04.031.

    Article  Google Scholar 

  27. • Jone PN, Ross MM, Bracken JA, Mulvahill MJ, Di Maria MV, Fagan TE. Feasibility and safety of using a fused echocardiography/fluoroscopy imaging system in patients with congenital heart disease. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2016;29(6):513–21. Initial use of fusion imaging in congenital heart disease and decrease radiation exposure in children undergoing atrial septal defect closures. https://doi.org/10.1016/j.echo.2016.03.014.

    Article  Google Scholar 

  28. Sundermann SH, Biaggi P, Grunenfelder J, Gessat M, Felix C, Bettex D, et al. Safety and feasibility of novel technology fusing echocardiography and fluoroscopy images during MitraClip interventions. EuroIntervention. 2014;9(10):1210–6. https://doi.org/10.4244/EIJV9I10A203.

    Article  PubMed  Google Scholar 

  29. Fagan TE, Truong UT, Jone PN, Bracken J, Quaife R, Hazeem AA, et al. Multimodality 3-dimensional image integration for congenital cardiac catheterization. Methodist DeBakey Cardiovasc J. 2014;10(2):68–76. https://doi.org/10.14797/mdcj-10-2-68.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quaife RA, Salcedo EE, Carroll JD. Procedural guidance using advance imaging techniques for percutaneous edge-to-edge mitral valve repair. Curr Cardiol Rep. 2014;16(2):452. https://doi.org/10.1007/s11886-013-0452-5.

    Article  PubMed  Google Scholar 

  31. Jungen C, Zeus T, Balzer J, Eickholt C, Petersen M, Kehmeier E, et al. Left atrial appendage closure guided by integrated echocardiography and fluoroscopy imaging reduces radiation exposure. PLoS One. 2015;10(10):e0140386. https://doi.org/10.1371/journal.pone.0140386.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balzer J, Zeus T, Hellhammer K, Veulemans V, Eschenhagen S, Kehmeier E, et al. Initial clinical experience using the EchoNavigator®-system during structural heart disease interventions. World J Cardiol. 2015;7(9):562–70. https://doi.org/10.4330/wjc.v7.i9.562.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Faletra FF, Berrebi A, Pedrazzini G, Leo LA, Paiocch VL, Cautilli G, et al. 3D transesophageal echocardiography: a new imaging tool for assessment of mitral regurgitation and for guiding percutaneous edge-to-edge mitral valve repair. Prog Cardiovasc Dis. 2017;(17)30141-X. https://doi.org/10.1016/j.pcad.2017.10.001.

  34. Faletra FF, Biasco L, Pedrazzini G, Moccetti M, Pasotti E, Leo LA, et al. Echocardiographic-fluoroscopic fusion imaging in transseptal puncture: a new technology for an old procedure. J Am Soc Echocardiogr: Off Publ Am Soc Echocardiogr. 2017;30(9):886–95. https://doi.org/10.1016/j.echo.2017.05.001.

    Article  Google Scholar 

  35. Afzal S, Veulemans V, Balzer J, Rassaf T, Hellhammer K, Polzin A, et al. Safety and efficacy of transseptal puncture guided by real-time fusion of echocardiography and fluoroscopy. Neth Hear J : Mon J Neth Soc Cardiol Neth Hear Found. 2017;25(2):131–6. https://doi.org/10.1007/s12471-016-0937-0.

    CAS  Article  Google Scholar 

  36. Afzal S, Soetemann D, Nijhof N, Kelm M, Zeus T. First experience with real-time 3D anatomical fusion imaging during left atrial appendage occluder implantation. Eur Hear J Cardiovasc Imaging. 2017;18(6):719–20. https://doi.org/10.1093/ehjci/jex030.

    Article  Google Scholar 

  37. Jenkins C, Bricknell K, Hanekom L, Marwick TH. Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol. 2004;44(4):878–86. https://doi.org/10.1016/j.jacc.2004.05.050.

    Article  PubMed  Google Scholar 

  38. Lu X, Xie M, Tomberlin D, Klas B, Nadvoretskiy V, Ayres N, et al. How accurately, reproducibly, and efficiently can we measure left ventricular indices using M-mode, 2-dimensional, and 3-dimensional echocardiography in children? Am Heart J. 2008;155(5):946–53. https://doi.org/10.1016/j.ahj.2007.11.034.

    Article  PubMed  Google Scholar 

  39. Balluz R, Liu L, Zhou X, Ge S. Real time three-dimensional echocardiography for quantification of ventricular volumes, mass, and function in children with congenital and acquired heart diseases. Echocardiography. 2013;30(4):472–82. https://doi.org/10.1111/echo.12132.

    Article  PubMed  Google Scholar 

  40. Friedberg MK, Su X, Tworetzky W, Soriano BD, Powell AJ, Marx GR. Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease: a comparison study with cardiac MRI. Circ Cardiovasc Imaging. 2010;3(6):735–42. https://doi.org/10.1161/CIRCIMAGING.109.928663.

    Article  PubMed  Google Scholar 

  41. van den Bosch AE, Robbers-Visser D, Krenning BJ, Voormolen MM, McGhie JS, Helbing WA, et al. Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2006;19(1):1–6. https://doi.org/10.1016/j.echo.2005.06.009.

    Article  Google Scholar 

  42. Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol. 2011;107(1):126–38. https://doi.org/10.1016/j.amjcard.2010.08.058.

    Article  PubMed  Google Scholar 

  43. Bernard A, Addetia K, Dulgheru R, Caballero L, Sugimoto T, Akhaladze N, et al. 3D echocardiographic reference ranges for normal left ventricular volumes and strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(4):475–83. https://doi.org/10.1093/ehjci/jew284.

    Article  PubMed  Google Scholar 

  44. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, et al. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging. 2009;2(6):451–9. https://doi.org/10.1161/CIRCIMAGING.109.858480.

    Article  PubMed  Google Scholar 

  45. • Kaku K, Takeuchi M, Tsang W, Takigiku K, Yasukochi S, Patel AR, et al. Age-related normal range of left ventricular strain and torsion using three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2014;27(1):55–64. A study of normal ranges of left ventricular strain and torsion in pediatric patients. https://doi.org/10.1016/j.echo.2013.10.002.

    Article  Google Scholar 

  46. Lilli A, Tessa C, Diciotti S, Croisille P, Clarysse P, Del Meglio J, et al. Simultaneous strain-volume analysis by three-dimensional echocardiography: validation in normal subjects with tagging cardiac magnetic resonance. J Cardiovasc Med (Hagerstown). 2017;18(4):223–9. https://doi.org/10.2459/JCM.0000000000000336.

    Article  Google Scholar 

  47. • Navarini S, Bellsham-Revell H, Chubb H, Gu H, Sinha MD, Simpson JM. Myocardial deformation measured by 3-dimensional speckle tracking in children and adolescents with systemic arterial hypertension. Hypertension. 2017;70(6):1142–7. A study of left ventricular dysfunction in hypertensive children. https://doi.org/10.1161/HYPERTENSIONAHA.117.09574.

    CAS  Article  PubMed  Google Scholar 

  48. Khoo NS, Young A, Occleshaw C, Cowan B, Zeng IS, Gentles TL. Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2009;22(11):1279–88. https://doi.org/10.1016/j.echo.2009.08.011.

    Article  Google Scholar 

  49. Dragulescu A, Grosse-Wortmann L, Fackoury C, Mertens L. Echocardiographic assessment of right ventricular volumes: a comparison of different techniques in children after surgical repair of tetralogy of Fallot. Eur Heart J Cardiovasc Imaging. 2012;13(7):596–604. https://doi.org/10.1093/ejechocard/jer278.

    Article  PubMed  Google Scholar 

  50. Dragulescu A, Grosse-Wortmann L, Fackoury C, Riffle S, Waiss M, Jaeggi E, et al. Echocardiographic assessment of right ventricular volumes after surgical repair of tetralogy of Fallot: clinical validation of a new echocardiographic method. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2011;24(11):1191–8. https://doi.org/10.1016/j.echo.2011.08.006.

    Article  Google Scholar 

  51. • Jone PN, Schafer M, Pan Z, Bremen C, Ivy DD. 3D echocardiographic evaluation of right ventricular function and strain: a prognostic study in paediatric pulmonary hypertension. Eur Heart J CardiovascImaging. 2017. A study of right ventricular volume and function in pediatric pulmonary hypertension and evaluating for outcomes. https://doi.org/10.1093/ehjci/jex205.

  52. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. https://doi.org/10.1161/CIRCULATIONAHA.107.653576.

    Article  PubMed  Google Scholar 

  53. Soriano BD, Hoch M, Ithuralde A, Geva T, Powell AJ, Kussman BD, et al. Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance. Circulation. 2008;117(14):1842–8. https://doi.org/10.1161/CIRCULATIONAHA.107.715854.

    Article  PubMed  Google Scholar 

  54. Zhang QB, Sun JP, Gao RF, Lee AP, Feng YL, Liu XR, et al. Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. Int J Cardiol. 2013;168(4):3991–5. https://doi.org/10.1016/j.ijcard.2013.06.088.

    Article  PubMed  Google Scholar 

  55. Maffessanti F, Muraru D, Esposito R, Gripari P, Ermacora D, Santoro C, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6(5):700–10. https://doi.org/10.1161/CIRCIMAGING.113.000706.

    Article  PubMed  Google Scholar 

  56. Tamborini G, Marsan NA, Gripari P, Maffessanti F, Brusoni D, Muratori M, et al. Reference values for right ventricular volumes and ejection fraction with real-time three-dimensional echocardiography: evaluation in a large series of normal subjects. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2010;23(2):109–15. https://doi.org/10.1016/j.echo.2009.11.026.

    Article  Google Scholar 

  57. • Muraru D, Spadotto V, Cecchetto A, Romeo G, Aruta P, Ermacora D, et al. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur Heart J Cardiovasc Imaging. 2016;17(11):1279–89. A study to evaluate the different right ventricular volume software analysis compared with cardiac magnetic imaging and demonstrated that the newly released commercial software allows for faster quantification in of right ventricle. https://doi.org/10.1093/ehjci/jev309.

    Article  PubMed  Google Scholar 

  58. Kutty S, Graney BA, Khoo NS, Li L, Polak A, Gribben P, et al. Serial assessment of right ventricular volume and function in surgically palliated hypoplastic left heart syndrome using real-time transthoracic three-dimensional echocardiography. J Am Soc Echocardiogr : Off Publ Am Soc Echocardiogr. 2012;25(6):682–9. https://doi.org/10.1016/j.echo.2012.02.008.

    Article  Google Scholar 

  59. Jone PN, Patel SS, Cassidy C, Ivy DD. Three-dimensional echocardiography of right ventricular function correlates with severity of pediatric pulmonary hypertension. Congenit Heart Dis. 2016;11(6):562–9. https://doi.org/10.1111/chd.12337.

    Article  PubMed  Google Scholar 

  60. Rajpoot K, Grau V, Noble JA, Becher H, Szmigielski C. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking. Med Image Anal. 2011;15(4):514–28. https://doi.org/10.1016/j.media.2011.02.007.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Ni Jone MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatric and Congenital Heart Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jone, PN., Khoo, N. Innovation in 3D Echocardiographic Imaging. Curr Treat Options Cardio Med 20, 1 (2018). https://doi.org/10.1007/s11936-018-0598-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-018-0598-y

Keywords

  • Three-dimensional echocardiography
  • Congenital heart disease
  • Atrioventricular valve mechanism
  • Ventricular volume and function
  • Holography