Imaging of Cardiovascular Disease in Pregnancy and the Peripartum Period

  • Theodore Pierce
  • Meline Hovnanian
  • Sandeep Hedgire
  • Brian Ghoshhajra
Pregnancy and Cardiovascular Disease (N Scott, Section Editor)
  • 229 Downloads
Part of the following topical collections:
  1. Topical Collection on Pregnancy and Cardiovascular Disease

Opinion statement

Cardiovascular disease is an important cause of morbidity and mortality during pregnancy and the postpartum period. During pregnancy, the cardiovascular system undergoes extensive hemodynamic, hormonal, and microstructural changes which may exacerbate a preexisting underlying cardiovascular condition or predispose to cardiovascular complications not typically seen in young healthy women. Such conditions include spontaneous coronary artery dissection, atherosclerotic coronary artery disease, and peripartum cardiomyopathy. When evaluating this patient population, the diagnostic strategy should be tailored to specifically assess this distinct disease spectrum. The choice of imaging techniques must also consider potential risks to both the mother and child; a unique challenge of diagnostic imaging during pregnancy. The risk of radiation from radiography, computed tomography, and nuclear medicine imaging; iodinated and gadolinium-based contrast media for computed tomography and magnetic resonance imaging respectively; and heat deposition from sonography are of special importance during pregnancy. A thorough understanding of pregnancy-specific cardiovascular complications and the capabilities and risks of available diagnostic imaging modalities is crucial to appropriately manage the pregnant patient.

Keywords

Computed tomography Magnetic resonance imaging Cardiac Cardiovascular Pregnancy Imaging 

Notes

Compliance with Ethical Standards

Conflict of Interest

Theodore Pierce, Meline Hovnanian, and Sandeep Hedgire each declare no potential conflicts of interest.

Brian Ghoshhajra is a consultant for Medtronic and a consultant for Siemens.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

  1. 1.
    Sanghavi M, Rutherford JD. Cardiovascular physiology of pregnancy. Circulation. 2014;130(12):1003–8.  https://doi.org/10.1161/CIRCULATIONAHA.114.009029.PubMedCrossRefGoogle Scholar
  2. 2.
    Presbitero P, Boccuzzi GG, Groot CJM, Roos-Hesselink JW. ESC textbook of cardiovascular medicine. Oxford: Oxford University Press; 2009.Google Scholar
  3. 3.
    Creanga AA, Syverson C, Seed K, Callaghan WM. Pregnancy-Related Mortality in the United States, 2011-2013. Obstetrics & Gynecology. 2017;130(2). doi:  10.1097/AOG.0000000000002114.
  4. 4.
    Nickens MA, Long RC, Geraci SA. Cardiovascular disease in pregnancy: (women's health series). South Med J. 2013;106(11):624–30.  https://doi.org/10.1097/SMJ.0000000000000015.PubMedCrossRefGoogle Scholar
  5. 5.
    Ladner HE, Danielsen B, Gilbert WM. Acute myocardial infarction in pregnancy and the puerperium: a population-based study. Obstet Gynecol. 2005;105(3):480–4.  https://doi.org/10.1097/01.AOG.0000151998.50852.31.PubMedCrossRefGoogle Scholar
  6. 6.
    European Society of G, Association for European Paediatric C, German Society for Gender M, Regitz-Zagrosek V, Blomstrom Lundqvist C, Borghi C, et al. ESC guidelines on the Management of Cardiovascular Diseases during pregnancy: the task force on the management of cardiovascular diseases during pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32(24):3147–97.  https://doi.org/10.1093/eurheartj/ehr218.CrossRefGoogle Scholar
  7. 7.
    Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56.  https://doi.org/10.1161/CIRCULATIONAHA.113.008396.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamazaki JN, Schull WJ. Perinatal loss and neurological abnormalities among children of the atomic bomb. Nagasaki and Hiroshima revisited, 1949 to 1989. JAMA. 1990;264(5):605–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Blot WJ, Miller RW. Mental retardation following in utero exposure to the atomic bombs of Hiroshima and Nagasaki. Radiology. 1973;106(3):617–9.  https://doi.org/10.1148/106.3.617.PubMedCrossRefGoogle Scholar
  10. 10.
    Otake M, Schull WJ. In utero exposure to A-bomb radiation and mental retardation; a reassessment. Br J Radiol. 1984;57(677):409–14.  https://doi.org/10.1259/0007-1285-57-677-409.PubMedCrossRefGoogle Scholar
  11. 11.
    Brent RL. The effect of embryonic and fetal exposure to x-ray, microwaves, and ultrasound: counseling the pregnant and nonpregnant patient about these risks. Semin Oncol. 1989;16(5):347–68.PubMedGoogle Scholar
  12. 12.
    Brent RL. Utilization of developmental basic science principles in the evaluation of reproductive risks from pre- and postconception environmental radiation exposures. Teratology. 1999;59(4):182–204.  https://doi.org/10.1002/(SICI)1096-9926(199904)59:4<182::AID-TERA2>3.0.CO;2-H.PubMedCrossRefGoogle Scholar
  13. 13.
    McCollough CH, Schueler BA, Atwell TD, Braun NN, Regner DM, Brown DL, et al. Radiation exposure and pregnancy: when should we be concerned? Radiogr :Rev Publ Radiol Soc N Am Inc. 2007;27(4):909–917; discussion 17-8.  https://doi.org/10.1148/rg.274065149.CrossRefGoogle Scholar
  14. 14.
    Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiogr :Rev Publ Radiol Soc N Am Inc. 2008;28(5):1451–9.  https://doi.org/10.1148/rg.285075075.CrossRefGoogle Scholar
  15. 15.
    Hunsaker AR, Lu MT, Goldhaber SZ, Rybicki FJ. Imaging in acute pulmonary embolism with special clinical scenarios. Circ Cardiovasc Imaging. 2010;3(4):491–500.  https://doi.org/10.1161/CIRCIMAGING.109.855981.PubMedCrossRefGoogle Scholar
  16. 16.
    Dennis AT. Transthoracic echocardiography in obstetric anaesthesia and obstetric critical illness. Int J Obstet Anesth. 2011;20(2):160–8.  https://doi.org/10.1016/j.ijoa.2010.11.007.PubMedCrossRefGoogle Scholar
  17. 17.
    American College of Obstetricians and Gynecologists' Committee on Obstetric Practice. Committee opinion no. 656: guidelines for diagnostic imaging during pregnancy and lactation. Obstet Gynecol. 2016;127(2):e75–80.  https://doi.org/10.1097/AOG.0000000000001316.CrossRefGoogle Scholar
  18. 18.
    Waksmonski CA. Cardiac imaging and functional assessment in pregnancy. Semin Perinatol. 2014;38(5):240–4.  https://doi.org/10.1053/j.semperi.2014.04.012.PubMedCrossRefGoogle Scholar
  19. 19.
    Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y. Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Int Med. 2006;166(13):1350–6.  https://doi.org/10.1001/archinte.166.13.1350.CrossRefGoogle Scholar
  20. 20.
    Morley CA, Lim BA. The risks of delay in diagnosis of breathlessness in pregnancy. BMJ. 1995;311(7012):1083–4.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Goldberg-Stein S, Liu B, Hahn PF, Lee SI. Body CT during pregnancy: utilization trends, examination indications, and fetal radiation doses. AJR Am J Roentgenol. 2011;196(1):146–51.  https://doi.org/10.2214/AJR.10.4271.PubMedCrossRefGoogle Scholar
  22. 22.
    Colletti PM, Lee KH, Elkayam U. Cardiovascular imaging of the pregnant patient. AJR Am J Roentgenol. 2013;200(3):515–21.  https://doi.org/10.2214/AJR.12.9864.PubMedCrossRefGoogle Scholar
  23. 23.
    Damilakis J, Perisinakis K, Voloudaki A, Gourtsoyiannis N. Estimation of fetal radiation dose from computed tomography scanning in late pregnancy: depth-dose data from routine examinations. Investig Radiol. 2000;35(9):527–33.CrossRefGoogle Scholar
  24. 24.
    Goldberg-Stein SA, Liu B, Hahn PF, Lee SI. Radiation dose management: part 2, estimating fetal radiation risk from CT during pregnancy. AJR Am J Roentgenol. 2012;198(4):W352–6.  https://doi.org/10.2214/AJR.11.7458.PubMedCrossRefGoogle Scholar
  25. 25.
    Felmlee JP, Gray JE, Leetzow ML, Price JC. Estimated fetal radiation dose from multislice CT studies. AJR Am J Roentgenol. 1990;154(1):185–90.  https://doi.org/10.2214/ajr.154.1.2104708.PubMedCrossRefGoogle Scholar
  26. 26.
    Lazarus E, Debenedectis C, North D, Spencer PK, Mayo-Smith WW. Utilization of imaging in pregnant patients: 10-year review of 5270 examinations in 3285 patients--1997-2006. Radiology. 2009;251(2):517–24.  https://doi.org/10.1148/radiol.2512080736.PubMedCrossRefGoogle Scholar
  27. 27.
    Wagner C, Lester R, Saldava L. Exposure of the pregnant patient to diagnostic radiation a guide to medical management. Madison: Medical Physics; 1997.Google Scholar
  28. 28.
    Revel MP, Cohen S, Sanchez O, Collignon MA, Thiam R, Redheuil A, et al. Pulmonary embolism during pregnancy: diagnosis with lung scintigraphy or CT angiography? Radiology. 2011;258(2):590–8.  https://doi.org/10.1148/radiol.10100986.PubMedCrossRefGoogle Scholar
  29. 29.
    Winer-Muram HT, Boone JM, Brown HL, Jennings SG, Mabie WC, Lombardo GT. Pulmonary embolism in pregnant patients: fetal radiation dose with helical CT. Radiology. 2002;224(2):487–92.  https://doi.org/10.1148/radiol.2242011581.PubMedCrossRefGoogle Scholar
  30. 30.
    Stone K. Acute abdominal emergencies associated with pregnancy. Clin Obstet Gynecol. 2002;45(2):553–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Schaefer-Prokop C, Prokop M. CTPA for the diagnosis of acute pulmonary embolism during pregnancy. Eur Radiol. 2008;18(12):2705–8.  https://doi.org/10.1007/s00330-008-1158-8.PubMedCrossRefGoogle Scholar
  32. 32.
    Ridge CA, McDermott S, Freyne BJ, Brennan DJ, Collins CD, Skehan SJ. Pulmonary embolism in pregnancy: comparison of pulmonary CT angiography and lung scintigraphy. AJR Am J Roentgenol. 2009;193(5):1223–7.  https://doi.org/10.2214/AJR.09.2360.PubMedCrossRefGoogle Scholar
  33. 33.
    McDermott S, Otrakji A, Flores EJ, Kalra MK, Shepard JO, Digumarthy SR. Should Dual-Energy Computed Tomography Pulmonary Angiography Replace Single-Energy Computed Tomography Pulmonary Angiography in Pregnant and Postpartum Patients? J Comput Assist Tomogr 2017. doi: https://doi.org/10.1097/RCT.0000000000000655.
  34. 34.
    Wang PI, Chong ST, Kielar AZ, Kelly AM, Knoepp UD, Mazza MB, et al. Imaging of pregnant and lactating patients: part 2, evidence-based review and recommendations. AJR Am J Roentgenol. 2012;198(4):785–92.  https://doi.org/10.2214/AJR.11.8223.PubMedCrossRefGoogle Scholar
  35. 35.
    Litmanovich D, Boiselle PM, Bankier AA, Kataoka ML, Pianykh O, Raptopoulos V. Dose reduction in computed tomographic angiography of pregnant patients with suspected acute pulmonary embolism. J Comput Assist Tomogr. 2009;33(6):961–6.  https://doi.org/10.1097/RCT.0b013e318198cd18.PubMedCrossRefGoogle Scholar
  36. 36.
    Kennedy EV, Iball GR, Brettle DS. Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography. Br J Radiol. 2007;80(956):631–8.  https://doi.org/10.1259/bjr/31771954.PubMedCrossRefGoogle Scholar
  37. 37.
    Widmark JM. Imaging-related medications: a class overview. PRO. 2007;20(4):408–17.Google Scholar
  38. 38.
    Webb JA, Thomsen HS, Morcos SK, Members of Contrast Media Safety Committee of European Society of Urogenital R. The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol. 2005;15(6):1234–40.  https://doi.org/10.1007/s00330-004-2583-y.PubMedCrossRefGoogle Scholar
  39. 39.
    American College of Radiology (2017) ACR manual on contrast media v 10.3. ACR committee on drugs and contrast media. American College of Radiology, acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast-Manual/Contrast_Media.pdf. 2017.
  40. 40.
    Wang PI, Chong ST, Kielar AZ, Kelly AM, Knoepp UD, Mazza MB, et al. Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol. 2012;198(4):778–84.  https://doi.org/10.2214/AJR.11.7405.PubMedCrossRefGoogle Scholar
  41. 41.
    Tremblay E, Therasse E, Thomassin-Naggara I, Trop I. Quality initiatives: guidelines for use of medical imaging during pregnancy and lactation. Radiogr :Rev Publ Radiol Soc N Am Inc. 2012;32(3):897–911.  https://doi.org/10.1148/rg.323115120.CrossRefGoogle Scholar
  42. 42.
    Ilett KF, Hackett LP, Paterson JW, McCormick CC. Excretion of metrizamide in milk. Br J Radiol. 1981;54(642):537–8.  https://doi.org/10.1259/0007-1285-54-642-537.PubMedCrossRefGoogle Scholar
  43. 43.
    Johansen JG. Assessment of a non-ionic contrast medium (Amipaque) in the gastrointestinal tract. Investig Radiol. 1978;13(6):523–7.CrossRefGoogle Scholar
  44. 44.
    Sechtem U, Tscholakoff D, Higgins CB. MRI of the normal pericardium. AJR Am J Roentgenol. 1986;147(2):239–44.  https://doi.org/10.2214/ajr.147.2.239.PubMedCrossRefGoogle Scholar
  45. 45.
    Breen JF. Imaging of the pericardium. J Thor Imaging. 2001;16(1):47–54.CrossRefGoogle Scholar
  46. 46.
    Schuijf JD, Bax JJ, Shaw LJ, de Roos A, Lamb HJ, van der Wall EE, et al. Meta-analysis of comparative diagnostic performance of magnetic resonance imaging and multislice computed tomography for noninvasive coronary angiography. Am Heart J. 2006;151(2):404–11.  https://doi.org/10.1016/j.ahj.2005.03.022.PubMedCrossRefGoogle Scholar
  47. 47.
    Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW, et al. ACR guidance document for safe MR practices: 2007. AJR Am J Roentgenol. 2007;188(6):1447–74.  https://doi.org/10.2214/AJR.06.1616.PubMedCrossRefGoogle Scholar
  48. 48.
    Baysinger CL. Imaging during pregnancy. Anesth Analg. 2010;110(3):863–7.  https://doi.org/10.1213/ANE.0b013e3181ca767e.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen MM, Coakley FV, Kaimal A, Laros RK Jr. Guidelines for computed tomography and magnetic resonance imaging use during pregnancy and lactation. Obstet Gynecol. 2008;112(2 Pt 1):333–40.  https://doi.org/10.1097/AOG.0b013e318180a505.PubMedCrossRefGoogle Scholar
  50. 50.
    Mevissen M, Buntenkotter S, Loscher W. Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology. 1994;50(3):229–37.  https://doi.org/10.1002/tera.1420500308.PubMedCrossRefGoogle Scholar
  51. 51.
    Beers GJ. Biological effects of weak electromagnetic fields from 0 Hz to 200 MHz: a survey of the literature with special emphasis on possible magnetic resonance effects. Magn Reson Imaging. 1989;7(3):309–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Glover P, Hykin J, Gowland P, Wright J, Johnson I, Mansfield P. An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol. 1995;68(814):1090–4.  https://doi.org/10.1259/0007-1285-68-814-1090.PubMedCrossRefGoogle Scholar
  53. 53.
    Clements H, Duncan KR, Fielding K, Gowland PA, Johnson IR, Baker PN. Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol. 2000;73(866):190–4.  https://doi.org/10.1259/bjr.73.866.10884733.PubMedCrossRefGoogle Scholar
  54. 54.
    Kok RD, de Vries MM, Heerschap A, van den Berg PP. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study. Magn Reson Imaging. 2004;22(6):851–4.  https://doi.org/10.1016/j.mri.2004.01.047.PubMedCrossRefGoogle Scholar
  55. 55.
    Reeves MJ, Brandreth M, Whitby EH, Hart AR, Paley MN, Griffiths PD, et al. Neonatal cochlear function: measurement after exposure to acoustic noise during in utero MR imaging. Radiolog. 2010;257(3):802–9.  https://doi.org/10.1148/radiol.10092366.CrossRefGoogle Scholar
  56. 56.
    American College of Radiology (2015) ACR-SPR practice parameter for the safe and optimal performance of fetal magnetic resonance imaging (MRI) Available via https://www.acr.org/~/media/CB384A65345F402083639E6756CE513F.pdf. Revised.
  57. 57.
    Okuda Y, Sagami F, Tirone P, Morisetti A, Bussi S, Masters RE. Reproductive and developmental toxicity study of gadobenate dimeglumine formulation (E7155) (3)--study of embryo-fetal toxicity in rabbits by intravenous administration. J Toxicol Sci. 1999;24(Suppl 1):79–87.PubMedCrossRefGoogle Scholar
  58. 58.
    Kubik-Huch RA, Gottstein-Aalame NM, Frenzel T, Seifert B, Puchert E, Wittek S, et al. Gadopentetate dimeglumine excretion into human breast milk during lactation. Radiology. 2000;216(2):555–8.  https://doi.org/10.1148/radiology.216.2.r00au09555.PubMedCrossRefGoogle Scholar
  59. 59.
    Rofsky NM, Weinreb JC, Litt AW. Quantitative analysis of gadopentetate dimeglumine excreted in breast milk. J Magn Reson Imaging : JMRI. 1993;3(1):131–2.PubMedCrossRefGoogle Scholar
  60. 60.
    Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085–92.  https://doi.org/10.1161/CIRCULATIONAHA.108.804617.PubMedCrossRefGoogle Scholar
  61. 61.
    Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Int Med. 2004;141(11):829–34.PubMedCrossRefGoogle Scholar
  62. 62.
    Agarwal PP, Dennie C, Pena E, Nguyen E, LaBounty T, Yang B, et al. Anomalous coronary arteries that need intervention: review of pre- and postoperative imaging appearances. Radiogr : Rev Publ Radiol Soc N Am Inc. 2017;37(3):740–57.  https://doi.org/10.1148/rg.2017160124.CrossRefGoogle Scholar
  63. 63.
    Keir M, Bhagra C, Vatenmakher D, Arancibia-Galilea F, Jansen K, Toh N, et al. Paediatric-onset coronary artery anomalies in pregnancy: a single-centre experience and systematic literature review. Cardiol Young. 2017;27(8):1529–37.  https://doi.org/10.1017/S1047951117000658.PubMedCrossRefGoogle Scholar
  64. 64.
    Kim SY, Seo JB, Do KH, Heo JN, Lee JS, Song JW, et al. Coronary artery anomalies: classification and ECG-gated multi-detector row CT findings with angiographic correlation. Radiogr : Rev Publ Radiol Soc N Am Inc. 2006;26(2):317–333; discussion 33-4.  https://doi.org/10.1148/rg.262055068.CrossRefGoogle Scholar
  65. 65.
    Shriki JE, Shinbane JS, Rashid MA, Hindoyan A, Withey JG, DeFrance A, et al. Identifying, characterizing, and classifying congenital anomalies of the coronary arteries. Radiogr : Rev Publ Radiol Soc N Am Inc. 2012;32(2):453–68.  https://doi.org/10.1148/rg.322115097.CrossRefGoogle Scholar
  66. 66.
    Cheezum MK, Liberthson RR, Shah NR, Villines TC, O'Gara PT, Landzberg MJ, et al. Anomalous aortic origin of a coronary artery from the inappropriate sinus of Valsalva. J Am Coll Cardiol. 2017;69(12):1592–608.  https://doi.org/10.1016/j.jacc.2017.01.031.PubMedCrossRefGoogle Scholar
  67. 67.
    Shi H, Aschoff AJ, Brambs HJ, Hoffmann MH. Multislice CT imaging of anomalous coronary arteries. Eur Radiol. 2004;14(12):2172–81.  https://doi.org/10.1007/s00330-004-2490-2.PubMedCrossRefGoogle Scholar
  68. 68.
    Datta J, White CS, Gilkeson RC, Meyer CA, Kansal S, Jani ML, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235(3):812–8.  https://doi.org/10.1148/radiol.2353040314.PubMedCrossRefGoogle Scholar
  69. 69.
    Roth A, Elkayam U. Acute myocardial infarction associated with pregnancy. J Am Coll Cardiol. 2008;52(3):171–80.  https://doi.org/10.1016/j.jacc.2008.03.049.PubMedCrossRefGoogle Scholar
  70. 70.
    Lewis G. The Confidential Enquiry into Maternal and Child Health (CEMACH). Saving Mothers’ Lives: Reviewing Maternal Deaths to make Motherhood Safer—2003–2005. The Seventh Report on Confidential Enquiries into Maternal Deaths in the United Kingdom. London: CEMACH, 2007 doi: 10.1258/om.2008.080017.
  71. 71.
    James AH, Jamison MG, Biswas MS, Brancazio LR, Swamy GK, Myers ER. Acute myocardial infarction in pregnancy: a United States population-based study. Circulation. 2006;113(12):1564–71.  https://doi.org/10.1161/CIRCULATIONAHA.105.576751.PubMedCrossRefGoogle Scholar
  72. 72.
    Elkayam U, Jalnapurkar S, Barakkat MN, Khatri N, Kealey AJ, Mehra A, et al. Pregnancy-associated acute myocardial infarction: a review of contemporary experience in 150 cases between 2006 and 2011. Circulation. 2014;129(16):1695–702.  https://doi.org/10.1161/CIRCULATIONAHA.113.002054.PubMedCrossRefGoogle Scholar
  73. 73.
    Hankins GD, Wendel GD Jr, Leveno KJ, Stoneham J. Myocardial infarction during pregnancy: a review. Obstet Gynecol. 1985;65(1):139–46.PubMedGoogle Scholar
  74. 74.
    Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM, et al. ACCF/AHA 2007 clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation clinical expert consensus task force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography). Circulation. 2007;115(3):402–26.  https://doi.org/10.1161/CIRCULATIONAHA..107.181425.PubMedCrossRefGoogle Scholar
  75. 75.
    Bastarrika G, Lee YS, Huda W, Ruzsics B, Costello P, Schoepf UJ. CT of coronary artery disease. Radiology. 2009;253(2):317–38.  https://doi.org/10.1148/radiol.2532081738.PubMedCrossRefGoogle Scholar
  76. 76.
    Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. Coronary artery disease - reporting and data system (CAD-RADS): an expert consensus document of SCCT, ACR and NASCI: endorsed by the ACC. JACC Cardiovasc Imaging. 2016;9(9):1099–113.  https://doi.org/10.1016/j.jcmg.2016.05.005.PubMedCrossRefGoogle Scholar
  77. 77.
    Sun Z. Cardiac CT imaging in coronary artery disease: current status and future directions. Quant Imaging Med Surg. 2012;2(2):98–105.  https://doi.org/10.3978/j.issn.2223-4292.2012.05.02.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Schuijf JD, Shaw LJ, Wijns W, Lamb HJ, Poldermans D, de Roos A, et al. Cardiac imaging in coronary artery disease: differing modalities. Heart. 2005;91(8):1110–7.  https://doi.org/10.1136/hrt.2005.061408.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Franco A, Javidi S, Ruehm SG. Delayed myocardial enhancement in cardiac magnetic resonance imaging. J Radiol Case Rep. 2015;9(6):6–18.  https://doi.org/10.3941/jrcr.v9i6.2328.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Choi KM, Kim RJ, Gubernikoff G, Vargas JD, Parker M, Judd RM. Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation. 2001;104(10):1101–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Thompson EA, Ferraris S, Gress T, Ferraris V. Gender differences and predictors of mortality in spontaneous coronary artery dissection: a review of reported cases. J Invasive Cardiol. 2005;17(1):59–61.PubMedGoogle Scholar
  82. 82.
    DeMaio SJ Jr, Kinsella SH, Silverman ME. Clinical course and long-term prognosis of spontaneous coronary artery dissection. Am J Cardiol. 1989;64(8):471–4.PubMedCrossRefGoogle Scholar
  83. 83.
    Tweet MS, Hayes SN, Pitta SR, Simari RD, Lerman A, Lennon RJ, et al. Clinical features, management, and prognosis of spontaneous coronary artery dissection. Circulation. 2012;126(5):579–88.  https://doi.org/10.1161/CIRCULATIONAHA.112.105718.PubMedCrossRefGoogle Scholar
  84. 84.
    Nishiguchi T, Tanaka A, Ozaki Y, Taruya A, Fukuda S, Taguchi H, et al. Prevalence of spontaneous coronary artery dissection in patients with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care. 2016;5(3):263–70.  https://doi.org/10.1177/2048872613504310.PubMedCrossRefGoogle Scholar
  85. 85.
    Rashid HN, Wong DT, Wijesekera H, Gutman SJ, Shanmugam VB, Gulati R, et al. Incidence and characterisation of spontaneous coronary artery dissection as a cause of acute coronary syndrome--a single-centre Australian experience. Int Journal Cardiol. 2016;202:336–8.  https://doi.org/10.1016/j.ijcard.2015.09.072.CrossRefGoogle Scholar
  86. 86.
    Koul AK, Hollander G, Moskovits N, Frankel R, Herrera L, Shani J. Coronary artery dissection during pregnancy and the postpartum period: two case reports and review of literature. Catheter Cardiovasc Interv : Off J Soc Card Angiogr Interv. 2001;52(1):88–94.CrossRefGoogle Scholar
  87. 87.
    Giacoppo D, Capodanno D, Dangas G, Tamburino C. Spontaneous coronary artery dissection. Int J Cardiol. 2014;175(1):8–20.  https://doi.org/10.1016/j.ijcard.2014.04.178.PubMedCrossRefGoogle Scholar
  88. 88.
    Vrints CJ. Spontaneous coronary artery dissection. Heart. 2010;96(10):801–8.  https://doi.org/10.1136/hrt.2008.162073.PubMedCrossRefGoogle Scholar
  89. 89.
    Saw J, Mancini GB, Humphries KH. Contemporary review on spontaneous coronary artery dissection. J Am Coll Cardiol. 2016;68(3):297–312.  https://doi.org/10.1016/j.jacc.2016.05.034.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakashima T, Noguchi T, Morita Y, Sakamoto H, Goto Y, Ishihara M, et al. Detection of intramural hematoma and serial non-contrast T1-weighted magnetic resonance imaging findings in a female patient with spontaneous coronary artery dissection. Circ J : Off J Jpn Circ Soc. 2013;77(11):2844–5.CrossRefGoogle Scholar
  91. 91.
    Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.  https://doi.org/10.1093/eurheartj/ehu281.PubMedCrossRefGoogle Scholar
  92. 92.
    Howard DP, Banerjee A, Fairhead JF, Perkins J, Silver LE, Rothwell PM, et al. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford vascular study. Circulation. 2013;127(20):2031–7.  https://doi.org/10.1161/CIRCULATIONAHA.112.000483.PubMedCrossRefGoogle Scholar
  93. 93.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.  https://doi.org/10.1161/CIR.0b013e3181d4739e.PubMedCrossRefGoogle Scholar
  94. 94.
    Nolte JE, Rutherford RB, Nawaz S, Rosenberger A, Speers WC, Krupski WC. Arterial dissections associated with pregnancy. J Vasc Surg. 1995;21(3):515–20.PubMedCrossRefGoogle Scholar
  95. 95.
    Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM. CT and MRI in diseases of the aorta. AJR Am J Roentgenol. 2009;193(4):928–40.  https://doi.org/10.2214/AJR.08.2166.PubMedCrossRefGoogle Scholar
  96. 96.
    Amparo EG, Higgins CB, Hricak H, Sollitto R. Aortic dissection: magnetic resonance imaging. Radiology. 1985;155(2):399–406.  https://doi.org/10.1148/radiology.155.2.3983390.PubMedCrossRefGoogle Scholar
  97. 97.
    Chang JM, Friese K, Caputo GR, Kondo C, Higgins CB. MR measurement of blood flow in the true and false channel in chronic aortic dissection. J Comput Assist Tomogr. 1991;15(3):418–23.PubMedCrossRefGoogle Scholar
  98. 98.
    Sakamoto I, Sueyoshi E, Uetani M. MR imaging of the aorta. Radiol Clin N Am. 2007;45(3):485–97.  https://doi.org/10.1016/j.rcl.2007.04.007.PubMedCrossRefGoogle Scholar
  99. 99.
    O'Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Martos R, et al. Cardiac MR imaging of nonischemic cardiomyopathies: imaging protocols and spectra of appearances. Radiology. 2012;262(2):403–22.  https://doi.org/10.1148/radiol.11100284.PubMedCrossRefGoogle Scholar
  100. 100.
    Sliwa K, Hilfiker-Kleiner D, Petrie MC, Mebazaa A, Pieske B, Buchmann E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of peripartum cardiomyopathy: a position statement from the heart failure Association of the European Society of cardiology working group on peripartum cardiomyopathy. Eur J Heart Fail. 2010;12(8):767–78.  https://doi.org/10.1093/eurjhf/hfq120.PubMedCrossRefGoogle Scholar
  101. 101.
    Abboud J, Murad Y, Chen-Scarabelli C, Saravolatz L, Scarabelli TM. Peripartum cardiomyopathy: a comprehensive review. Int J Cardiol. 2007;118(3):295–303.  https://doi.org/10.1016/j.ijcard.2006.08.005.PubMedCrossRefGoogle Scholar
  102. 102.
    Sliwa K, Fett J, Elkayam U. Peripartum cardiomyopathy. Lancet. 2006;368(9536):687–93.  https://doi.org/10.1016/S0140-6736(06)69253-2.PubMedCrossRefGoogle Scholar
  103. 103.
    Srichai MB, Junor C, Rodriguez LL, Stillman AE, Grimm RA, Lieber ML, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152(1):75–84.  https://doi.org/10.1016/j.ahj.2005.08.021.PubMedCrossRefGoogle Scholar
  104. 104.
    Renz DM, Rottgen R, Habedank D, Wagner M, Bottcher J, Pfeil A, et al. New insights into peripartum cardiomyopathy using cardiac magnetic resonance imaging. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2011;183(9):834–41.  https://doi.org/10.1055/s-0031-1281600.PubMedCrossRefGoogle Scholar
  105. 105.
    Vujin B, Kovačević D, Petrović M, Ivanov I, Panić G. Takotsubo cardiomyopathy in pregnancy. Cent Eur J Med. 2014;9(1):49–53.  https://doi.org/10.2478/s11536-013-0257-3.CrossRefGoogle Scholar
  106. 106.
    Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–38.  https://doi.org/10.1056/NEJMoa1406761.PubMedCrossRefGoogle Scholar
  107. 107.
    Bybee KA, Prasad A, Barsness GW, Lerman A, Jaffe AS, Murphy JG, et al. Clinical characteristics and thrombolysis in myocardial infarction frame counts in women with transient left ventricular apical ballooning syndrome. Am J Cardiol. 2004;94(3):343–6.  https://doi.org/10.1016/j.amjcard.2004.04.030.PubMedCrossRefGoogle Scholar
  108. 108.
    Gianni M, Dentali F, Grandi AM, Sumner G, Hiralal R, Lonn E. Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J. 2006;27(13):1523–9.  https://doi.org/10.1093/eurheartj/ehl032.PubMedCrossRefGoogle Scholar
  109. 109.
    Brezina P, Isler CM. Takotsubo cardiomyopathy in pregnancy. Obstet Gynecol. 2008;112(2 Pt 2):450–2.  https://doi.org/10.1097/AOG.0b013e3181662cfe.PubMedCrossRefGoogle Scholar
  110. 110.
    Ruiz S, Martinez-Marin M, Luque P, Nassar N, Oros D. Takotsubo cardiomyopathy after cesarean section: a case report and literature review. J Obstet Gynaecol Res. 2017;43(2):392–6.  https://doi.org/10.1111/jog.13212.PubMedCrossRefGoogle Scholar
  111. 111.
    Minatoguchi M, Itakura A, Takagi E, Nishibayashi M, Kikuchi M, Ishihara O. Takotsubo cardiomyopathy after cesarean: a case report and published work review of pregnancy-related cases. J Obstet Gynaecol Res. 2014;40(6):1534–9.  https://doi.org/10.1111/jog.12437.PubMedCrossRefGoogle Scholar
  112. 112.
    Eitel I, Behrendt F, Schindler K, Kivelitz D, Gutberlet M, Schuler G, et al. Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J. 2008;29(21):2651–9.  https://doi.org/10.1093/eurheartj/ehn433.PubMedCrossRefGoogle Scholar
  113. 113.
    Roos-Hesselink JW, Ruys TP, Stein JI, Thilen U, Webb GD, Niwa K, et al. Outcome of pregnancy in patients with structural or ischaemic heart disease: results of a registry of the European Society of Cardiology. Eur Heart J. 2013;34(9):657–65.  https://doi.org/10.1093/eurheartj/ehs270.PubMedCrossRefGoogle Scholar
  114. 114.
    Stangl V, Schad J, Gossing G, Borges A, Baumann G, Stangl K. Maternal heart disease and pregnancy outcome: a single-centre experience. Eur J Heart Fail. 2008;10(9):855–60.  https://doi.org/10.1016/j.ejheart.2008.07.017.PubMedCrossRefGoogle Scholar
  115. 115.
    Regitz-Zagrosek V, Gohlke-Barwolf C, Iung B, Pieper PG. Management of cardiovascular diseases during pregnancy. Curr Probl Cardiol. 2014;39(4–5):85–151.  https://doi.org/10.1016/j.cpcardiol.2014.02.001.PubMedCrossRefGoogle Scholar
  116. 116.
    Greutmann M, Pieper PG. Pregnancy in women with congenital heart disease. Eur Heart J. 2015;36(37):2491–9.  https://doi.org/10.1093/eurheartj/ehv288.PubMedCrossRefGoogle Scholar
  117. 117.
    Joint Task Force on the Management of Valvular Heart Disease of the European Society of C, European Association for Cardio-Thoracic S, Vahanian A, Alfieri O, Andreotti F, Antunes MJ, et al. Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451–96.  https://doi.org/10.1093/eurheartj/ehs109.CrossRefGoogle Scholar
  118. 118.
    Krieger EV, Lee J, Branch KR, Hamilton-Craig C. Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart. 2016;102(23):1864–70.  https://doi.org/10.1136/heartjnl-2015-309054.PubMedCrossRefGoogle Scholar
  119. 119.
    Lee JC, Branch KR, Hamilton-Craig C, et al. Evaluation of aortic regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart. 2017. doi: https://doi.org/10.1136/heartjnl-2016-310819.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Theodore Pierce
    • 1
  • Meline Hovnanian
    • 2
  • Sandeep Hedgire
    • 3
  • Brian Ghoshhajra
    • 3
  1. 1.Department of RadiologyMassachusetts General HospitalBostonUSA
  2. 2.Department of Cardiothoracic RadiologyMount Sinai School of Medicine – BISLRNew YorkUSA
  3. 3.Division of Cardiovascular ImagingMassachusetts General Hospital - Harvard Medical SchoolBostonUSA

Personalised recommendations