Advertisement

Multi-Modality Imaging in the Evaluation and Treatment of Mitral Regurgitation

  • Marc-André Bouchard
  • Claudia Côté-Laroche
  • Jonathan Beaudoin
Imaging (Q Truong, Section Editor)
  • 286 Downloads
Part of the following topical collections:
  1. Topical Collection on Imaging

Opinion statement

Mitral regurgitation (MR) is frequent and associated with increased mortality and morbidity when severe. It may be caused by intrinsic valvular disease (primary MR) or ventricular deformation (secondary MR). Imaging has a critical role to document the severity, mechanism, and impact of MR on heart function as selected patients with MR may benefit from surgery whereas other will not. In patients planned for a surgical intervention, imaging is also important to select candidates for mitral valve (MV) repair over replacement and to predict surgical success. Although standard transthoracic echocardiography is the first-line modality to evaluate MR, newer imaging modalities like three-dimensional (3D) transesophageal echocardiography, stress echocardiography, cardiac magnetic resonance (CMR), and computed tomography (CT) are emerging and complementary tools for MR assessment. While some of these modalities can provide insight into MR severity, others will help to determine its mechanism. Understanding the advantages and limitations of each imaging modality is important to appreciate their respective role for MR assessment and help to resolve eventual discrepancies between different diagnostic methods. With the increasing use of transcatheter mitral procedures (repair or replacement) for high-surgical-risk patients, multimodality imaging has now become even more important to determine eligibility, preinterventional planning, and periprocedural guidance.

Keywords

Mitral regurgitation Echocardiography Cardiac computed tomography Cardiac magnetic resonance 

Notes

Compliance with Ethical Standards

Conflict of interest

Marc-André Bouchard and Claudia Côté-Laroche each declare no potential conflicts of interest.

Jonathan Beaudoin is funded by the Fonds de Recherche du Québec-Santé (Montreal, Quebec, Canada) and his research program by the Heart and Stroke Foundation of Canada.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11.CrossRefPubMedGoogle Scholar
  2. 2.
    Otsuji Y, Handschumacher MD, Schwammenthal E, Jiang L, Song JK, Guerrero JL, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: direct in vivo demonstration of altered leaflet tethering geometry. Circulation. 1997;96(6):1999–2008.CrossRefPubMedGoogle Scholar
  3. 3.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, 3rd, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 70(2):252–289.Google Scholar
  4. 4.
    •• Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in collaboration with the Society for Cardiovascular Magnetic Resonance. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2017;30(4):303–71. Most recent guideline for valvular heart disease assessement with echocardiography and magnetic resonance.CrossRefGoogle Scholar
  5. 5.
    Pinheiro AC, Mancuso FJ, Hemerly DF, Kiyose AT, Campos O, de Andrade JL, et al. Diagnostic value of color flow mapping and Doppler echocardiography in the quantification of mitral regurgitation in patients with mitral valve prolapse or rheumatic heart disease. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2007;20(10):1141–8.CrossRefGoogle Scholar
  6. 6.
    Enriquez-Sarano M, Avierinos JF, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, et al. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med. 2005;352(9):875–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103(13):1759–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Matsumura Y, Fukuda S, Tran H, Greenberg NL, Agler DA, Wada N, et al. Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J. 2008;155(2):231–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Konstadt SN, Louie EK, Shore-Lesserson L, Black S, Scanlon P. The effects of loading changes on intraoperative Doppler assessment of mitral regurgitation. J Cardiothorac Vasc Anesth. 1994;8(1):19–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Zeng X, Levine RA, Hua L, Morris EL, Kang Y, Flaherty M, et al. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circulation Cardiovascular imaging. 2011;4(5):506–13.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Le Goffic C, Toledano M, Ennezat PV, Binda C, Castel AL, Delelis F, et al. Quantitative evaluation of mitral regurgitation secondary to mitral valve prolapse by magnetic resonance imaging and echocardiography. Am J Cardiol. 2015;116(9):1405–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Lancellotti P, Troisfontaines P, Toussaint AC, Pierard LA. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation. 2003;108(14):1713–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Pierard LA, Lancellotti P. The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N Engl J Med. 2004;351(16):1627–34.CrossRefPubMedGoogle Scholar
  14. 14.
    Krieger EV, Lee J, Branch KR, Hamilton-Craig C. Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart. 2016;102(23):1864–70.CrossRefPubMedGoogle Scholar
  15. 15.
    Kon MW, Myerson SG, Moat NE, Pennell DJ. Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. The Journal of heart valve disease. 2004;13(4):600–7.PubMedGoogle Scholar
  16. 16.
    Lopez-Mattei JC, Ibrahim H, Shaikh KA, Little SH, Shah DJ, Maragiannis D, et al. Comparative assessment of mitral regurgitation severity by transthoracic echocardiography and cardiac magnetic resonance using an integrative and quantitative approach. Am J Cardiol. 2016;117(2):264–70.CrossRefPubMedGoogle Scholar
  17. 17.
    Gelfand EV, Hughes S, Hauser TH, Yeon SB, Goepfert L, Kissinger KV, et al. Severity of mitral and aortic regurgitation as assessed by cardiovascular magnetic resonance: optimizing correlation with Doppler echocardiography. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2006;8(3):503–7.CrossRefGoogle Scholar
  18. 18.
    Myerson SG, d’Arcy J, Christiansen JP, Dobson LE, Mohiaddin R, Francis JM, et al. Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification. Circulation. 2016;133(23):2287–96. Reference outlining the role of magnetic resonance for mitral regurgitation quantification.Google Scholar
  19. 19.
    Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65(11):1078–88. Reference outlining the role of magnetic resonance for mitral regurgitation quantification.Google Scholar
  20. 20.
    Ling LH, Enriquez-Sarano M, Seward JB, Orszulak TA, Schaff HV, Bailey KR, et al. Early surgery in patients with mitral regurgitation due to flail leaflets: a long-term outcome study. Circulation. 1997;96(6):1819–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Goldstone AB, Cohen JE, Howard JL, Edwards BB, Acker AL, Hiesinger W, et al. A “repair-all” strategy for degenerative mitral valve disease safely minimizes unnecessary replacement. Ann Thorac Surg. 2015;99(6):1983–1990; discussion 90-1.Google Scholar
  22. 22.
    David TE, Ivanov J, Armstrong S, Christie D, Rakowski H. A comparison of outcomes of mitral valve repair for degenerative disease with posterior, anterior, and bileaflet prolapse. J Thorac Cardiovasc Surg. 2005;130(5):1242–9.Google Scholar
  23. 23.
    Flameng W, Meuris B, Herijgers P, Herregods MC. Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency. J Thorac Cardiovasc Surg. 2008;135(2):274–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Gazoni LM, Fedoruk LM, Kern JA, Dent JM, Reece TB, Tribble CG, et al. A simplified approach to degenerative disease: triangular resections of the mitral valve. Ann Thorac Surg. 2007;83(5):1658–1664; discussion 64-5.Google Scholar
  25. 25.
    Adams DH, Anyanwu AC. The cardiologist’s role in increasing the rate of mitral valve repair in degenerative disease. Curr Opin Cardiol. 2008;23(2):105–10.CrossRefPubMedGoogle Scholar
  26. 26.
    Chan V, Ruel M, Chaudry S, Lambert S, Mesana TG. Clinical and echocardiographic outcomes after repair of mitral valve bileaflet prolapse due to myxomatous disease. J Thorac Cardiovasc Surg. 2012;143(4 Suppl):S8–11.CrossRefPubMedGoogle Scholar
  27. 27.
    Duran CM, Gometza B, Saad E. Valve repair in rheumatic mitral disease: an unsolved problem. J Card Surg. 1994;9(2 Suppl):282–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Mihos CG, Pineda AM, Capoulade R, Santana OA. Systematic review of mitral valve repair with autologous pericardial leaflet augmentation for rheumatic mitral regurgitation. Ann Thorac Surg. 2016;102(4):1400–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Petrone G, Theodoropoulos P, Punjabi PP. Early results of rheumatic mitral valve repair. The Journal of heart valve disease. 2016;25(6):691–5.PubMedGoogle Scholar
  30. 30.
    Tevaearai Stahel HT, Kammermann A, Gahl B, Englberger L, Carrel TP. A simple preoperative score including the surgeon’s experience to predict the probability of a successful mitral valve repair. Interact Cardiovasc Thorac Surg. 2017;24(6):841–7.Google Scholar
  31. 31.
    Rostagno C, Carone E, Stefano PL. Role of mitral valve repair in active infective endocarditis: long term results. J Cardiothorac Surg. 2017;12(1):29.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zegdi R, Debieche M, Latremouille C, Lebied D, Chardigny C, Grinda JM, et al. Long-term results of mitral valve repair in active endocarditis. Circulation. 2005;111(19):2532–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Silverman NH. Echocardiography of congenital mitral valve disorders: echocardiographic-morphological comparisons. Cardiol Young. 2014;24(6):1030–48.CrossRefPubMedGoogle Scholar
  34. 34.
    Marino BS, Kruge LE, Cho CJ, Tomlinson RS, Shera D, Weinberg PM, et al. Parachute mitral valve: morphologic descriptors, associated lesions, and outcomes after biventricular repair. J Thorac Cardiovasc Surg. 2009;137(2):385–93.e4.CrossRefPubMedGoogle Scholar
  35. 35.
    Bai AD, Steinberg M, Showler A, Burry L, Bhatia RS, Tomlinson GA, et al. Diagnostic accuracy of transthoracic echocardiography for infective endocarditis findings using transesophageal echocardiography as the reference standard: a meta-analysis. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2017;30(7):639–46.e8.CrossRefGoogle Scholar
  36. 36.
    Omran AS, Woo A, David TE, Feindel CM, Rakowski H, Siu SC. Intraoperative transesophageal echocardiography accurately predicts mitral valve anatomy and suitability for repair. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2002;15(9):950–7.CrossRefGoogle Scholar
  37. 37.
    Ben Zekry S, Nagueh SF, Little SH, Quinones MA, McCulloch ML, Karanbir S, et al. Comparative accuracy of two- and three-dimensional transthoracic and transesophageal echocardiography in identifying mitral valve pathology in patients undergoing mitral valve repair: initial observations. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2011;24(10):1079–85.CrossRefGoogle Scholar
  38. 38.
    Biaggi P, Jedrzkiewicz S, Gruner C, Meineri M, Karski J, Vegas A, et al. Quantification of mitral valve anatomy by three-dimensional transesophageal echocardiography in mitral valve prolapse predicts surgical anatomy and the complexity of mitral valve repair. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2012;25(7):758–65.CrossRefGoogle Scholar
  39. 39.
    Grewal J, Mankad S, Freeman WK, Click RL, Suri RM, Abel MD, et al. Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2009;22(1):34–41.CrossRefGoogle Scholar
  40. 40.
    Chikwe J, Adams DH, KN S, Anyanwu AC, Lin HM, Goldstone AB, et al. Can three-dimensional echocardiography accurately predict complexity of mitral valve repair? European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2012;41(3):518–24.CrossRefGoogle Scholar
  41. 41.
    Tamborini G, Muratori M, Maltagliati A, Galli CA, Naliato M, Zanobini M, et al. Pre-operative transthoracic real-time three-dimensional echocardiography in patients undergoing mitral valve repair: accuracy in cases with simple vs. complex prolapse lesions. European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology. 2010;11(9):778–85.CrossRefGoogle Scholar
  42. 42.
    Kron IL, Green GR, Cope JT. Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. Ann Thorac Surg. 2002;74(2):600–1.CrossRefPubMedGoogle Scholar
  43. 43.
    Moradi M, Nazari M, Khajouei AS, Esfahani MA. Comparison of the accuracy of cardiac computed tomography angiography and transthoracic echocardiography in the diagnosis of mitral valve prolapse. Advanced biomedical research. 2015;4:221.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Koo HJ, Yang DH, Kang JW, Lee JY, Kim DH, Song JM, et al. Demonstration of infective endocarditis by cardiac CT and transoesophageal echocardiography: comparison with intra-operative findings. European heart journal cardiovascular Imaging. 2017;Google Scholar
  45. 45.
    Habets J, Tanis W, Reitsma JB, van den Brink RB, Mali WP, Chamuleau SA, et al. Are novel non-invasive imaging techniques needed in patients with suspected prosthetic heart valve endocarditis? A systematic review and meta-analysis. Eur Radiol. 2015;25(7):2125–33.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Iung B, Erba PA, Petrosillo N, Lazzeri E. Common diagnostic flowcharts in infective endocarditis. Q J Nucl Med Mol Imaging. 2014;58(1):55-65.Google Scholar
  47. 47.
    Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol. 2013;61(23):2374–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. ESC guidelines for the management of infective endocarditis: the task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36(44):3075–128.CrossRefPubMedGoogle Scholar
  49. 49.
    Gabriel RS, Kerr AJ, Raffel OC, Stewart RA, Cowan BR, Occleshaw CJ. Mapping of mitral regurgitant defects by cardiovascular magnetic resonance in moderate or severe mitral regurgitation secondary to mitral valve prolapse. Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance. 2008;10:16.CrossRefGoogle Scholar
  50. 50.
    Otsuji Y, Kumanohoso T, Yoshifuku S, Matsukida K, Koriyama C, Kisanuki A, et al. Isolated annular dilation does not usually cause important functional mitral regurgitation: comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J Am Coll Cardiol. 2002;39(10):1651–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim DH, Handschumacher MD, Levine RA, Choi YS, Kim YJ, Yun SC, et al. In vivo measurement of mitral leaflet surface area and subvalvular geometry in patients with asymmetrical septal hypertrophy: insights into the mechanism of outflow tract obstruction. Circulation. 2010;122(13):1298–307.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Breithardt OA, Sinha AM, Schwammenthal E, Bidaoui N, Markus KU, Franke A, et al. Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol. 2003;41(5):765–70.CrossRefPubMedGoogle Scholar
  53. 53.
    Alizadeh A, Sanati HR, Haji-Karimi M, Yazdi AH, Rad MA, Haghjoo M, et al. Induction and aggravation of atrioventricular valve regurgitation in the course of chronic right ventricular apical pacing. Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology. 2011;13(11):1587–90.CrossRefGoogle Scholar
  54. 54.
    St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation. 2003;107(15):1985–90.CrossRefPubMedGoogle Scholar
  55. 55.
    Beaudoin J, Singh JP, Szymonifka J, Zhou Q, Levine RA, Januzzi JL, et al. Novel heart failure biomarkers predict improvement of mitral regurgitation in patients receiving cardiac resynchronization therapy—the BIOCRT study. The Canadian journal of cardiology. 2016;32(12):1478–84.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Goldstein D, Moskowitz AJ, Gelijns AC, Ailawadi G, Parides MK, Perrault LP, et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N Engl J Med. 2016;374(4):344–53.CrossRefPubMedGoogle Scholar
  57. 57.
    Kron IL, Hung J, Overbey JR, Bouchard D, Gelijns AC, Moskowitz AJ, et al. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J Thorac Cardiovasc Surg. 2015;149(3):752–61.e1.CrossRefPubMedGoogle Scholar
  58. 58.
    Magne J, Pibarot P, Dagenais F, Hachicha Z, Dumesnil JG, Senechal M. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation. 2007;115(6):782–91.CrossRefPubMedGoogle Scholar
  59. 59.
    Hung J, Papakostas L, Tahta SA, Hardy BG, Bollen BA, Duran CM, et al. Mechanism of recurrent ischemic mitral regurgitation after annuloplasty: continued LV remodeling as a moving target. Circulation. 2004;110(11 Suppl 1):Ii85–90.PubMedGoogle Scholar
  60. 60.
    Gelsomino S, Lorusso R, De Cicco G, Capecchi I, Rostagno C, Caciolli S, et al. Five-year echocardiographic results of combined undersized mitral ring annuloplasty and coronary artery bypass grafting for chronic ischaemic mitral regurgitation. Eur Heart J. 2008;29(2):231–40.CrossRefPubMedGoogle Scholar
  61. 61.
    Braun J, van de Veire NR, Klautz RJ, Versteegh MI, Holman ER, Westenberg JJ, et al. Restrictive mitral annuloplasty cures ischemic mitral regurgitation and heart failure. Ann Thorac Surg. 2008;85(2):430–436; discussion 6-7.Google Scholar
  62. 62.
    Wijdh-den Hamer IJ, Bouma W, Lai EK, Levack MM, Shang EK, Pouch AM, et al. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty. J Thorac Cardiovasc Surg. 2016;152(3):847–59.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chinitz JS, Chen D, Goyal P, Wilson S, Islam F, Nguyen T, et al. Mitral apparatus assessment by delayed enhancement CMR: relative impact of infarct distribution on mitral regurgitation. JACC Cardiovascular imaging. 2013;6(2):220–34.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.CrossRefPubMedGoogle Scholar
  65. 65.
    Feldman T, Kar S, Rinaldi M, Fail P, Hermiller J, Smalling R, et al. Percutaneous mitral repair with the MitraClip system: safety and midterm durability in the initial EVEREST (Endovascular Valve Edge-to-Edge REpair Study) cohort. J Am Coll Cardiol. 2009;54(8):686–94.CrossRefPubMedGoogle Scholar
  66. 66.
    Feldman T, Foster E, Glower DD, Kar S, Rinaldi MJ, Fail PS, et al. Percutaneous repair or surgery for mitral regurgitation. N Engl J Med. 2011;364(15):1395–406.CrossRefPubMedGoogle Scholar
  67. 67.
    Regueiro A, Granada JF, Dagenais F, Rodes-Cabau J. Transcatheter mitral valve replacement: insights from early clinical experience and future challenges. J Am Coll Cardiol. 2017;69(17):2175–92.CrossRefPubMedGoogle Scholar
  68. 68.
    Blanke P, Naoum C, Webb J, Dvir D, Hahn RT, Grayburn P, et al. Multimodality imaging in the context of transcatheter mitral valve replacement: establishing consensus among modalities and disciplines. JACC Cardiovascular imaging. 2015;8(10):1191–208. Manuscript describing detailed imaging metrics for patients considered for transcatheter mitral valve replacement.Google Scholar
  69. 69.
    Alfieri O, Maisano F, De Bonis M, Stefano PL, Torracca L, Oppizzi M, et al. The double-orifice technique in mitral valve repair: a simple solution for complex problems. J Thorac Cardiovasc Surg. 2001;122(4):674–81. Google Scholar
  70. 70.
    Gripari P, Maffessanti F, Tamborini G, Muratori M, Fusini L, Ali SG, et al. Patients selection for MitraClip: time to move to transthoracic echocardiographic screening? Int J Cardiol. 2014;176(2):491–4.CrossRefPubMedGoogle Scholar
  71. 71.
    Zamorano J, Goncalves A, Lancellotti P, Andersen KA, Gonzalez-Gomez A, Monaghan M, et al. The use of imaging in new transcatheter interventions: an EACVI review paper. European heart journal cardiovascular Imaging. 2016;17(8):835–af.CrossRefPubMedGoogle Scholar
  72. 72.
    Cheung A, Webb JG, Barbanti M, Freeman M, Binder RK, Thompson C, et al. 5-year experience with transcatheter transapical mitral valve-in-valve implantation for bioprosthetic valve dysfunction. J Am Coll Cardiol. 2013;61(17):1759–66.CrossRefPubMedGoogle Scholar
  73. 73.
    Descoutures F, Himbert D, Maisano F, Casselman F, de Weger A, Bodea O, et al. Transcatheter valve-in-ring implantation after failure of surgical mitral repair. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2013;44(1):e8–15.CrossRefGoogle Scholar
  74. 74.
    Paradis JM, Del Trigo M, Puri R, Rodes-Cabau J. Transcatheter valve-in-valve and valve-in-ring for treating aortic and mitral surgical prosthetic dysfunction. J Am Coll Cardiol. 2015;66(18):2019–37.CrossRefPubMedGoogle Scholar
  75. 75.
    Hyodo E, Iwata S, Tugcu A, Oe Y, Koczo A, Shimada K, et al. Accurate measurement of mitral annular area by using single and biplane linear measurements: comparison of conventional methods with the three-dimensional planimetric method. European heart journal cardiovascular Imaging. 2012;13(7):605–11.CrossRefPubMedGoogle Scholar
  76. 76.
    Blanke P, Dvir D, Naoum C, Cheung A, Ye J, Theriault-Lauzier P, et al. Prediction of fluoroscopic angulation and coronary sinus location by CT in the context of transcatheter mitral valve implantation. Journal of cardiovascular computed tomography. 2015;9(3):183–92.CrossRefPubMedGoogle Scholar
  77. 77.
    Mak GJ, Blanke P, Ong K, Naoum C, Thompson CR, Webb JG, et al. Three-dimensional echocardiography compared with computed tomography to determine mitral annulus size before transcatheter mitral valve implantation. Circulation Cardiovascular imaging. 2016;9(6):e004176.CrossRefPubMedGoogle Scholar
  78. 78.
    Biner S, Perk G, Kar S, Rafique AM, Slater J, Shiota T, et al. Utility of combined two-dimensional and three-dimensional transesophageal imaging for catheter-based mitral valve clip repair of mitral regurgitation. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2011;24(6):611–7.CrossRefGoogle Scholar
  79. 79.
    Rihal CS, Sorajja P, Booker JD, Hagler DJ, Cabalka AK. Principles of percutaneous paravalvular leak closure. JACC Cardiovascular interventions. 2012;5(2):121–30.CrossRefPubMedGoogle Scholar
  80. 80.
    Taramasso M, Maisano F, Latib A, Denti P, Guidotti A, Sticchi A, et al. Conventional surgery and transcatheter closure via surgical transapical approach for paravalvular leak repair in high-risk patients: results from a single-centre experience. European heart journal cardiovascular Imaging. 2014;15(10):1161–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Calvert PA, Northridge DB, Malik IS, Shapiro L, Ludman P, Qureshi SA, et al. Percutaneous device closure of paravalvular leak: combined experience from the United Kingdom and Ireland. Circulation. 2016;134(13):934–44.CrossRefPubMedGoogle Scholar
  82. 82.
    Wei J, Yin WH, Lee YT, Hsiung MC, Tsai SK, Chuang YC, et al. Intraoperative three-dimensional transesophageal echocardiography for assessing the defect geometries of mitral prosthetic paravalvular leak during transcatheter closure. Journal of the Chinese Medical Association : JCMA. 2015;78(3):158–63.CrossRefPubMedGoogle Scholar
  83. 83.
    Franco E, Almeria C, de Agustin JA, Arreo Del Val V, Gomez de Diego JJ, Garcia Fernandez MA, et al. Three-dimensional color Doppler transesophageal echocardiography for mitral paravalvular leak quantification and evaluation of percutaneous closure success. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2014;27(11):1153–63.CrossRefGoogle Scholar
  84. 84.
    Suh YJ, Hong GR, Han K, Im DJ, Chang S, Hong YJ, et al. Assessment of mitral paravalvular leakage after mitral valve replacement using cardiac computed tomography: comparison with surgical findings. Circulation Cardiovascular imaging. 2016;9(6):e004153.CrossRefPubMedGoogle Scholar
  85. 85.
    Krishnaswamy A, Tuzcu EM, Kapadia SR. Integration of MDCT and fluoroscopy using C-arm computed tomography to guide structural cardiac interventions in the cardiac catheterization laboratory. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions. 2015;85(1):139–47.CrossRefGoogle Scholar
  86. 86.
    Korsholm K, Mortensen U, Jensen JM, Piazza N, Theriault-Lauzier P, Nielsen-Kudsk JE. Transcatheter mitral paravalvular leak closure facilitated by preprocedural cardiac ct for simulation of fluoroscopic anatomy and paravalvular defect localization. The Journal of invasive cardiology. 2017;29(2):E23–E5.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Marc-André Bouchard
    • 1
  • Claudia Côté-Laroche
    • 1
  • Jonathan Beaudoin
    • 1
  1. 1.Institut Universitaire de Cardiologie et de Pneumologie de Québec (Quebec Heart and Lung Institute), Department of MedicineLaval UniversityQuébecCanada

Personalised recommendations