Skip to main content

Advertisement

Log in

The Role of Cardiac Biomarkers in Pregnancy

  • Pregnancy and Cardiovascular Disease (N Scott, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Cardiovascular disease (CVD) is the leading cause of pregnancy-associated mortality, with an increasingly complex pregnant population. While our understanding of CVD in pregnancy continues to evolve, there remains a need to develop widely accessible tools to follow pregnant women both with and without preexisting disease with respect to cardiovascular risk, particularly for those presenting with symptoms suggestive of cardiovascular pathology. Thus, research is emerging with respect to the potential role of novel and established cardiac biomarkers in diagnosing and following CVD in pregnancy. Here, we review the normal hemodynamics of pregnancy and the behavior of various biomarkers in both normal and complicated pregnancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of great importance

  1. • Knight M, Nair M, Tuffnell D, Kenyon S, Shakespeare J, Brocklehurst P, et al. Saving lives, improving mothers’ care. Surveillance of maternal deaths in the UK 2012–14 and lessons learned to inform maternity care from the UK and Ireland confidential enquiries into maternal deaths and morbidity 2009–14. 2016 [cited 2/21/2017]. [cited 2/21/2017]. Available from: https://www.npeu.ox.ac.uk/downloads/files/mbrrace-uk/reports/MBRRACE-UK%20Maternal%20Report%202016%20-%20website.pdf. This report summarizes the causes of maternal mortality including cardiovascular causes in the United Kingdom from 2009–2014.

  2. Hameed AB, Lawton ES, McCain CL, Morton CH, Mitchell C, Main EK, et al. Pregnancy-related cardiovascular deaths in California: beyond peripartum cardiomyopathy. Am J Obstet Gynecol. 2015;213(3):379 e1–10.

    Article  Google Scholar 

  3. Nanna M, Stergiopoulos K. Pregnancy complicated by valvular heart disease: an update. J Am Heart Assoc. 2014;3(3):e000712.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Easterling TR, Benedetti TJ, Schmucker BC, Millard SP. Maternal hemodynamics in normal and preeclamptic pregnancies: a longitudinal study. Obstet Gynecol. 1990;76(6):1061–9.

    CAS  PubMed  Google Scholar 

  5. Geva T, Mauer MB, Striker L, Kirshon B, Pivarnik JM. Effects of physiologic load of pregnancy on left ventricular contractility and remodeling. Am Heart J. 1997;133(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mabie WC, DiSessa TG, Crocker LG, Sibai BM, Arheart KL. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol. 1994;170(3):849–56.

    Article  CAS  PubMed  Google Scholar 

  7. Mone SM, Sanders SP, Colan SD. Control mechanisms for physiological hypertrophy of pregnancy. Circulation. 1996;94(4):667–72.

    Article  CAS  PubMed  Google Scholar 

  8. Robson SC, Hunter S, Boys RJ, Dunlop W. Serial study of factors influencing changes in cardiac output during human pregnancy. Am J Phys. 1989;256(4 Pt 2):H1060–5.

    CAS  Google Scholar 

  9. Hunter S, Robson SC. Adaptation of the maternal heart in pregnancy. Br Heart J. 1992;68(6):540–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robson SC, Dunlop W, Moore M, Hunter S. Combined Doppler and echocardiographic measurement of cardiac output: theory and application in pregnancy. Br J Obstet Gynaecol. 1987;94(11):1014–27.

    Article  CAS  PubMed  Google Scholar 

  11. Robson SC, Dunlop W, Boys RJ, Hunter S. Cardiac output during labour. Br Med J. 1987;295(6607):1169–72.

    Article  CAS  Google Scholar 

  12. Robson SC, Hunter S, Moore M, Dunlop W. Haemodynamic changes during the puerperium: a Doppler and M-mode echocardiographic study. Br J Obstet Gynaecol. 1987;94(11):1028–39.

    Article  CAS  PubMed  Google Scholar 

  13. Savu O, Jurcut R, Giusca S, van Mieghem T, Gussi I, Popescu BA, et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circulation Cardiovascular imaging. 2012;5(3):289–97.

    Article  PubMed  Google Scholar 

  14. Yurteri-Kaplan L, Saber S, Zamudio S, Srinivasan D, Nyirenda T, Alvarez M, et al. Brain natriuretic peptide in term pregnancy. Reprod Sci. 2012;19(5):520–5.

    Article  CAS  PubMed  Google Scholar 

  15. Hameed AB, Chan K, Ghamsary M, Elkayam U. Longitudinal changes in the B-type natriuretic peptide levels in normal pregnancy and postpartum. Clin Cardiol. 2009;32(8):E60–2.

    Article  PubMed  Google Scholar 

  16. Mayama M, Yoshihara M, Uno K, Tano S, Takeda T, Ukai M, et al. Factors influencing brain natriuretic peptide levels in healthy pregnant women. Int J Cardiol. 2017;228:749–53.

    Article  PubMed  Google Scholar 

  17. Resnik JL, Hong C, Resnik R, Kazanegra R, Beede J, Bhalla V, et al. Evaluation of B-type natriuretic peptide (BNP) levels in normal and preeclamptic women. Am J Obstet Gynecol. 2005;193(2):450–4.

    Article  CAS  PubMed  Google Scholar 

  18. Afshani N, Moustaqim-Barrette A, Biccard BM, Rodseth RN, Dyer RA. Utility of B-type natriuretic peptides in preeclampsia: a systematic review. Int J Obstet Anesth. 2013;22(2):96–103.

    Article  CAS  PubMed  Google Scholar 

  19. Pasupathi P, Manivannan U, Manivannan P, Deepa M. Cardiac troponins and oxidative stress markers in non-pregnant, pregnant and preeclampsia women. Bangladesh Med Res Counc Bull. 2010;36(1):4–9.

    Article  PubMed  Google Scholar 

  20. Shivvers SA, Wians FH Jr, Keffer JH, Ramin SM. Maternal cardiac troponin I levels during normal labor and delivery. Am J Obstet Gynecol. 1999;180(1 Pt 1):122.

    Article  CAS  PubMed  Google Scholar 

  21. Dogan R, Birdane A, Bilir A, Ekemen S, Tanriverdi B. Frequency of electrocardiographic changes indicating myocardial ischemia during elective cesarean delivery with regional and general anesthesia: detection based on continuous Holter monitoring and serum markers of ischemia. J Clin Anesth. 2008;20(5):347–51.

    Article  PubMed  Google Scholar 

  22. Smith R, Silversides C, Downey K, Newton G, Macarthur A. Assessing the incidence of peripartum subclinical myocardial ischemia using the troponin T assay: an observational pilot study. Int J Obstet Anesth. 2015;24(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  23. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstetrics and gynecology. 2013;122(5):1122–31.

  24. Walker JJ. Pre-eclampsia. Lancet (London, England). 2000;356(9237):1260–5.

    Article  CAS  Google Scholar 

  25. Ananth CV, Keyes KM, Wapner RJ. Pre-eclampsia rates in the United States, 1980–2010: age-period-cohort analysis. BMJ (Clinical research ed). 2013;347:f6564.

    Google Scholar 

  26. Fong A, Chau CT, Pan D, Ogunyemi DA. Clinical morbidities, trends, and demographics of eclampsia: a population-based study. Am J Obstet Gynecol. 2013;209(3):229 e1–7.

    Article  Google Scholar 

  27. Melchiorre K, Sharma R, Thilaganathan B. Cardiovascular implications in preeclampsia: an overview. Circulation. 2014;130(8):703–14.

    Article  PubMed  Google Scholar 

  28. Rafik Hamad R, Larsson A, Pernow J, Bremme K, Eriksson MJ. Assessment of left ventricular structure and function in preeclampsia by echocardiography and cardiovascular biomarkers. J Hypertens. 2009;27(11):2257–64.

    Article  PubMed  Google Scholar 

  29. Alvarez-Fernandez I, Prieto B, Rodriguez V, Ruano Y, Escudero AI, Alvarez FV. N-terminal pro B-type natriuretic peptide and angiogenic biomarkers in the prognosis of adverse outcomes in women with suspected preeclampsia. Clinica chimica acta; international journal of clinical chemistry. 2016;463:150–7.

    Article  CAS  PubMed  Google Scholar 

  30. Uyar I, Kurt S, Demirtas O, Gurbuz T, Aldemir OS, Keser B, et al. The value of uterine artery Doppler and NT-proBNP levels in the second trimester to predict preeclampsia. Arch Gynecol Obstet. 2015;291(6):1253–8.

    Article  CAS  PubMed  Google Scholar 

  31. Junus K, Wikstrom AK, Larsson A, Olovsson M. Early second-trimester plasma levels of NT-proBNP in women who subsequently develop early-onset preeclampsia. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2016:1–3.

  32. Sadlecki P, Grabiec M, Walentowicz-Sadlecka M. Prenatal clinical assessment of NT-proBNP as a diagnostic tool for preeclampsia, gestational hypertension and gestational diabetes mellitus. PLoS One. 2016;11(9):e0162957.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Joyal D, Leya F, Koh M, Besinger R, Ramana R, Kahn S, et al. Troponin I levels in patients with preeclampsia. Am J Med. 2007;120(9):819 e13–4.

    Article  Google Scholar 

  34. Aydin C, Baloglu A, Cetinkaya B, Yavuzcan A. Cardiac troponin levels in pregnant women with severe pre-eclampsia. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology. 2009;29(7):621–3.

    Article  CAS  Google Scholar 

  35. Atis A, Aydin Y, Basol E, Goker N. Troponin I and homocysteine levels in mild and severe preeclampsia. Clinical and experimental obstetrics & gynecology. 2010;37(1):21–3.

    CAS  Google Scholar 

  36. Fleming SM, O’Gorman T, Finn J, Grimes H, Daly K, Morrison JJ. Cardiac troponin I in pre-eclampsia and gestational hypertension. BJOG : an international journal of obstetrics and gynaecology. 2000;107(11):1417–20.

    Article  CAS  Google Scholar 

  37. Pergialiotis V, Prodromidou A, Frountzas M, Perrea DN, Papantoniou N. Maternal cardiac troponin levels in pre-eclampsia: a systematic review. The Journal of Maternal-Fetal & Neonatal Medicine: the Official Journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2016;29(20):3386–90.

    CAS  Google Scholar 

  38. Yang X, Wang H, Wang Z, Dong M. Alteration and significance of serum cardiac troponin I and cystatin C in preeclampsia. Clinica Chimica Acta; International Journal of Clinical Chemistry. 2006;374(1–2):168–9.

    Article  CAS  PubMed  Google Scholar 

  39. Atalay C, Erden G, Turhan T, Yildiran G, Saracoglu OF, Koca Y. The effect of magnesium sulfate treatment on serum cardiac troponin I levels in preeclamptic women. Acta Obstet Gynecol Scand. 2005;84(7):617–21.

    Article  PubMed  Google Scholar 

  40. Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.

    Article  CAS  PubMed  Google Scholar 

  41. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Radulescu C, Bacarea A, Hutanu A, Gabor R, Dobreanu M. Placental growth factor, soluble fms-like tyrosine kinase 1, soluble endoglin, IL-6, and IL-16 as biomarkers in preeclampsia. Mediat Inflamm. 2016;2016:3027363.

    Article  Google Scholar 

  43. Vatten LJ, Eskild A, Nilsen TI, Jeansson S, Jenum PA, Staff AC. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Am J Obstet Gynecol. 2007;196(3):239.e1–6.

    Article  Google Scholar 

  44. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.

    Article  CAS  PubMed  Google Scholar 

  45. Verlohren S, Herraiz I, Lapaire O, Schlembach D, Moertl M, Zeisler H, et al. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol. 2012;206(1):58.e1–8.

    Article  CAS  Google Scholar 

  46. Villa PM, Hamalainen E, Maki A, Raikkonen K, Pesonen AK, Taipale P, et al. Vasoactive agents for the prediction of early- and late-onset preeclampsia in a high-risk cohort. BMC pregnancy and childbirth. 2013;13:110.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rana S, Powe CE, Salahuddin S, Verlohren S, Perschel FH, Levine RJ, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22. A prospective multicenter observational study establishing that a sFlt-1 to PlGF ratio of 38 or lower for women with suspected pre-eclampsia has a high negative predictive value for excluding disease in the short term.

    Article  CAS  PubMed  Google Scholar 

  49. Shahul S, Medvedofsky D, Wenger JB, Nizamuddin J, Brown SM, Bajracharya S, et al. Circulating antiangiogenic factors and myocardial dysfunction in hypertensive disorders of pregnancy. Hypertension. 2016;67(6):1273–80.

    Article  CAS  PubMed  Google Scholar 

  50. Arany Z, Elkayam U. Peripartum cardiomyopathy. Circulation. 2016;133(14):1397–409.

    Article  CAS  PubMed  Google Scholar 

  51. Pearson GD, Veille JC, Rahimtoola S, Hsia J, Oakley CM, Hosenpud JD, et al. Peripartum cardiomyopathy: National Heart, Lung, and Blood Institute and Office of Rare Diseases (National Institutes of Health) workshop recommendations and review. JAMA. 2000;283(9):1183–8.

    Article  CAS  PubMed  Google Scholar 

  52. Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen NQ, Scherr M, et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J Clin Invest. 2013;123(5):2143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Forster O, Hilfiker-Kleiner D, Ansari AA, Sundstrom JB, Libhaber E, Tshani W, et al. Reversal of IFN-gamma, oxLDL and prolactin serum levels correlate with clinical improvement in patients with peripartum cardiomyopathy. Eur J Heart Fail. 2008;10(9):861–8.

    Article  CAS  PubMed  Google Scholar 

  54. Li W, Li H, Long Y. Clinical characteristics and long-term predictors of persistent left ventricular systolic dysfunction in peripartum cardiomyopathy. The Canadian Journal of Cardiology. 2016;32(3):362–8.

    Article  PubMed  Google Scholar 

  55. Hu CL, Li YB, Zou YG, Zhang JM, Chen JB, Liu J, et al. Troponin T measurement can predict persistent left ventricular dysfunction in peripartum cardiomyopathy. Heart. 2007;93(4):488–90.

    Article  CAS  PubMed  Google Scholar 

  56. Damp J, Givertz MM, Semigran M, Alharethi R, Ewald G, Felker GM, et al. Relaxin-2 and soluble Flt1 levels in peripartum cardiomyopathy: results of the Multicenter IPAC Study. JACC Heart failure. 2016;4(5):380–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sliwa K, Forster O, Libhaber E, Fett JD, Sundstrom JB, Hilfiker-Kleiner D, et al. Peripartum cardiomyopathy: inflammatory markers as predictors of outcome in 100 prospectively studied patients. Eur Heart J. 2006;27(4):441–6.

    Article  CAS  PubMed  Google Scholar 

  58. Ismail S, Wong C, Rajan P, Vidovich MI. ST-elevation acute myocardial infarction in pregnancy: 2016 update. Clinical Cardiology. 2017.

  59. Regitz-Zagrosek V, Seeland U, Geibel-Zehender A, Gohlke-Barwolf C, Kruck I, Schaefer C. Cardiovascular diseases in pregnancy. Deutsches Arzteblatt international. 2011;108(16):267–73.

    PubMed  PubMed Central  Google Scholar 

  60. Tanous D, Siu SC, Mason J, Greutmann M, Wald RM, Parker JD, et al. B-type natriuretic peptide in pregnant women with heart disease. J Am Coll Cardiol. 2010;56(15):1247–53.

    Article  CAS  PubMed  Google Scholar 

  61. Kampman MA, Balci A, van Veldhuisen DJ, van Dijk AP, Roos-Hesselink JW, Sollie-Szarynska KM, et al. N-terminal pro-B-type natriuretic peptide predicts cardiovascular complications in pregnant women with congenital heart disease. Eur Heart J. 2014;35(11):708–15.

    Article  CAS  PubMed  Google Scholar 

  62. •• Canobbio MM, Warnes CA, Aboulhosn J, Connolly HM, Khanna A, Koos BJ, et al. Management of pregnancy in patients with complex congenital heart disease: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2017;135(8):e50–87. Recently published guidelines by the American Heart Association on the management of pregnancy in women with complex congenital heart disease.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Sarma MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pregnancy and Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, E.S., Sarma, A. The Role of Cardiac Biomarkers in Pregnancy. Curr Treat Options Cardio Med 19, 49 (2017). https://doi.org/10.1007/s11936-017-0553-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0553-3

Keywords

Navigation