Skip to main content
Log in

Injectable Bioengineered Hydrogel Therapy in the Treatment of Ischemic Cardiomyopathy

  • Regenerative Medicine and Stem-cell Therapy (S Wu and P Hsieh, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Over the past two decades, the field of cardiovascular medicine has seen the rapid development of multiple different modalities for the treatment of ischemic myocardial disease. Most research efforts have focused on strategies aimed at coronary revascularization, with significant technological advances made in percutaneous coronary interventions as well as coronary artery bypass graft surgery. However, recent research efforts have shifted towards ways to address the downstream effects of myocardial infarction on both cellular and molecular levels. To this end, the broad application of injectable hydrogel therapy after myocardial infarction has stimulated tremendous interest. In this article, we will review what hydrogels are, how they can be bioengineered in unique ways to optimize therapeutic potential, and how they can be used as part of a treatment strategy after myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44. doi:10.1161/CIR.0b013e31820a55f5.

    Article  PubMed  Google Scholar 

  2. Jackson BM, Gorman JH, Moainie SL, Guy TS, Narula N, Narula J, et al. Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol. 2002;40(6):1160–7. discussion 8-71.

    Article  PubMed  Google Scholar 

  3. Wenk JF, Klepach D, Lee LC, Zhang Z, Ge L, Tseng EE, et al. First evidence of depressed contractility in the border zone of a human myocardial infarction. Ann Thorac Surg. 2012;93(4):1188–93. doi:10.1016/j.athoracsur.2011.12.066.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yu L, Ding J. Injectable hydrogels as unique biomedical materials. Chem Soc Rev. 2008;37(8):1473–81. doi:10.1039/b713009k.

    Article  CAS  PubMed  Google Scholar 

  5. Yan C, Pochan DJ. Rheological properties of peptide-based hydrogels for biomedical and other applications. Chem Soc Rev. 2010;39(9):3528–40. doi:10.1039/b919449p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  7. Moller L, Krause A, Dahlmann J, Gruh I, Kirschning A, Drager G. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering. Int J Artif Organs. 2011;34(2):93–102.

    Article  PubMed  Google Scholar 

  8. Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, et al. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials. 2015;69:65–75. doi:10.1016/j.biomaterials.2015.08.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tous E, Weber HM, Lee MH, Koomalsingh KJ, Shuto T, Kondo N, et al. Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater. 2012;8(9):3218–27. doi:10.1016/j.actbio.2012.05.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Plotkin M, Vaibavi SR, Rufaihah AJ, Nithya V, Wang J, Shachaf Y, et al. The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials. 2014;35(5):1429–38. doi:10.1016/j.biomaterials.2013.10.058.

    Article  CAS  PubMed  Google Scholar 

  11. • Rodell CB, MacArthur JW, Dorsey SM, Wade RJ, Wang LL, Woo YJ, et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25(4):636–44. doi:10.1002/adfm.201403550. In this manuscript, Rodell et al describe hydrogel chemistry that allows for catheter based delivery techniques in a shear thinning, self healing format.

    Article  CAS  PubMed  Google Scholar 

  12. Wang T, Wu DQ, Jiang XJ, Zhang XZ, Li XY, Zhang JF, et al. Novel thermosensitive hydrogel injection inhibits post-infarct ventricle remodelling. Eur J Heart Fail. 2009;11(1):14–9. doi:10.1093/eurjhf/hfn009.

    Article  CAS  PubMed  Google Scholar 

  13. Eckhouse SR, Purcell BP, McGarvey JR, Lobb D, Logdon CB, Doviak H, et al. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci Transl Med. 2014;6(223):223ra21. doi:10.1126/scitranslmed.3007244.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mann DL, Kubo SH, Sabbah HN, Starling RC, Jessup M, Oh JK, et al. Beneficial effects of the CorCap cardiac support device: five-year results from the Acorn Trial. J Thorac Cardiovasc Surg. 2012;143(5):1036–42. doi:10.1016/j.jtcvs.2011.06.014.

    Article  PubMed  Google Scholar 

  15. Costanzo MR, Ivanhoe RJ, Kao A, Anand IS, Bank A, Boehmer J, et al. Prospective evaluation of elastic restraint to lessen the effects of heart failure (PEERLESS-HF) trial. J Card Fail. 2012;18(6):446–58. doi:10.1016/j.cardfail.2012.04.004.

    Article  PubMed  Google Scholar 

  16. Enomoto Y, Gorman 3rd JH, Moainie SL, Guy TS, Jackson BM, Parish LM, et al. Surgical treatment of ischemic mitral regurgitation might not influence ventricular remodeling. J Thorac Cardiovasc Surg. 2005;129(3):504–11. doi:10.1016/j.jtcvs.2004.09.035.

    Article  PubMed  Google Scholar 

  17. Pilla JJ, Blom AS, Gorman 3rd JH, Brockman DJ, Affuso J, Parish LM, et al. Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. Ann Thorac Surg. 2005;80(6):2257–62. doi:10.1016/j.athoracsur.2005.05.089.

    Article  PubMed  Google Scholar 

  18. Blom AS, Pilla JJ, Arkles J, Dougherty L, Ryan LP, Gorman 3rd JH, et al. Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. Ann Thorac Surg. 2007;84(6):2004–10. doi:10.1016/j.athoracsur.2007.06.062.

    Article  PubMed  Google Scholar 

  19. Morita M, Eckert CE, Matsuzaki K, Noma M, Ryan LP, Burdick JA, et al. Modification of infarct material properties limits adverse ventricular remodeling. Ann Thorac Surg. 2011;92(2):617–24. doi:10.1016/j.athoracsur.2011.04.051.

    Article  PubMed  PubMed Central  Google Scholar 

  20. McGarvey JR, Kondo N, Witschey WR, Takebe M, Aoki C, Burdick JA, et al. Injectable microsphere gel progressively improves global ventricular function, regional contractile strain, and mitral regurgitation after myocardial infarction. Ann Thorac Surg. 2015;99(2):597–603. doi:10.1016/j.athoracsur.2014.09.014.

    Article  PubMed  Google Scholar 

  21. Kichula ET, Wang H, Dorsey SM, Szczesny SE, Elliott DM, Burdick JA, et al. Experimental and computational investigation of altered mechanical properties in myocardium after hydrogel injection. Ann Biomed Eng. 2014;42(7):1546–56. doi:10.1007/s10439-013-0937-9.

    Article  PubMed  Google Scholar 

  22. Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, et al. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci U S A. 2010;107(25):11507–12. doi:10.1073/pnas.1004097107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tous E, Ifkovits JL, Koomalsingh KJ, Shuto T, Soeda T, Kondo N, et al. Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules. 2011;12(11):4127–35. doi:10.1021/bm201198x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frey N, Linke A, Suselbeck T, Muller-Ehmsen J, Vermeersch P, Schoors D, et al. Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study. Circ Cardiovasc Interv. 2014;7(6):806–12. doi:10.1161/CIRCINTERVENTIONS.114.001478.

    Article  PubMed  Google Scholar 

  25. Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, et al. Algisyl-LVR with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol. 2013;168(3):2022–8. doi:10.1016/j.ijcard.2013.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  26. • Mann DL, Lee RJ, Coats AJ, Neagoe G, Dragomir D, Pusineri E, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail. 2016;18(3):314–25. doi:10.1002/ejhf.449. This is the first large scale, multi-institutional trial using a hydrogel in heart failure patients.

    Article  CAS  PubMed  Google Scholar 

  27. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44(8):1690–9. doi:10.1016/j.jacc.2004.08.014.

    Article  PubMed  Google Scholar 

  28. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27(23):2775–83. doi:10.1093/eurheartj/ehl388.

    Article  PubMed  Google Scholar 

  29. Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011;306(19):2110–9. doi:10.1001/jama.2011.1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308(22):2380–9. doi:10.1001/jama.2012.28726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA. 2012;307(16):1717–26. doi:10.1001/jama.2012.418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904. doi:10.1016/S0140-6736(12)60195-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57. doi:10.1016/S0140-6736(11)61590-0.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Patel AN, Geffner L, Vina RF, Saslavsky J, Urschel Jr HC, Kormos R, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study. J Thorac Cardiovasc Surg. 2005;130(6):1631–8. doi:10.1016/j.jtcvs.2005.07.056.

    Article  PubMed  Google Scholar 

  35. Li SH, Lai TY, Sun Z, Han M, Moriyama E, Wilson B, et al. Tracking cardiac engraftment and distribution of implanted bone marrow cells: comparing intra-aortic, intravenous, and intramyocardial delivery. J Thorac Cardiovasc Surg. 2009;137(5):1225–33. doi:10.1016/j.jtcvs.2008.11.001. e1.

    Article  PubMed  Google Scholar 

  36. Li Z, Fan Z, Xu Y, Lo W, Wang X, Niu H, et al. pH-sensitive and thermosensitive hydrogels as stem-cell carriers for cardiac therapy. ACS Appl Mater Interfaces. 2016;8(17):10752–60. doi:10.1021/acsami.6b01374.

    Article  CAS  PubMed  Google Scholar 

  37. Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials. 2012;33(11):3093–106. doi:10.1016/j.biomaterials.2011.12.044.

    Article  CAS  PubMed  Google Scholar 

  38. Matsushita S, Forrester JS, Li C, Sato M, Li Z, Guo X, et al. Administration of cells with thermosensitive hydrogel enhances the functional recovery in ischemic rat heart. J Tissue Eng. 2016;7:2041731416646676. doi:10.1177/2041731416646676.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nakajima K, Fujita J, Matsui M, Tohyama S, Tamura N, Kanazawa H, et al. Gelatin hydrogel enhances the engraftment of transplanted cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction. PLoS One. 2015;10(7):e0133308. doi:10.1371/journal.pone.0133308.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang H, Liu Z, Li D, Guo X, Kasper FK, Duan C, et al. Injectable biodegradable hydrogels for embryonic stem cell transplantation: improved cardiac remodelling and function of myocardial infarction. J Cell Mol Med. 2012;16(6):1310–20. doi:10.1111/j.1582-4934.2011.01409.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xu Y, Patnaik S, Guo X, Li Z, Lo W, Butler R, et al. Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomater. 2014;10(8):3449–62. doi:10.1016/j.actbio.2014.04.018.

    Article  CAS  PubMed  Google Scholar 

  42. Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One. 2012;7(12):e51991. doi:10.1371/journal.pone.0051991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roche ET, Hastings CL, Lewin SA, Shvartsman DE, Brudno Y, Vasilyev NV, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35(25):6850–8. doi:10.1016/j.biomaterials.2014.04.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. MacArthur Jr JW, Purcell BP, Shudo Y, Cohen JE, Fairman A, Trubelja A, et al. Sustained release of engineered stromal cell-derived factor 1-alpha from injectable hydrogels effectively recruits endothelial progenitor cells and preserves ventricular function after myocardial infarction. Circulation. 2013;128(11 Suppl 1):S79–86. doi:10.1161/CIRCULATIONAHA.112.000343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cohen JE, Purcell BP, MacArthur Jr JW, Mu A, Shudo Y, Patel JB, et al. A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail. 2014;7(4):619–26. doi:10.1161/CIRCHEARTFAILURE.113.001273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Purcell BP, Elser JA, Mu A, Margulies KB, Burdick JA. Synergistic effects of SDF-1alpha chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials. 2012;33(31):7849–57. doi:10.1016/j.biomaterials.2012.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reis LA, Chiu LL, Wu J, Feric N, Laschinger C, Momen A, et al. Hydrogels with integrin-binding angiopoietin-1-derived peptide, QHREDGS, for treatment of acute myocardial infarction. Circ Heart Fail. 2015;8(2):333–41. doi:10.1161/CIRCHEARTFAILURE.114.001881.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu H, Jiang X, Li X, Hu M, Wan W, Wen Y, et al. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessel. 2016;31(6):963–75. doi:10.1007/s00380-015-0710-0.

    Article  Google Scholar 

  49. Sonnenberg SB, Rane AA, Liu CJ, Rao N, Agmon G, Suarez S, et al. Delivery of an engineered HGF fragment in an extracellular matrix-derived hydrogel prevents negative LV remodeling post-myocardial infarction. Biomaterials. 2015;45:56–63. doi:10.1016/j.biomaterials.2014.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Projahn D, Simsekyilmaz S, Singh S, Kanzler I, Kramp BK, Langer M, et al. Controlled intramyocardial release of engineered chemokines by biodegradable hydrogels as a treatment approach of myocardial infarction. J Cell Mol Med. 2014;18(5):790–800. doi:10.1111/jcmm.12225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Camci-Unal G, Aubin H, Ahari AF, Bae H, Nichol JW, Khademhosseini A. Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter. 2010;6(20):5120–6. doi:10.1039/c0sm00508h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koudstaal S, Bastings MM, Feyen DA, Waring CD, van Slochteren FJ, Dankers PY, et al. Sustained delivery of insulin-like growth factor-1/hepatocyte growth factor stimulates endogenous cardiac repair in the chronic infarcted pig heart. J Cardiovasc Transl Res. 2014;7(2):232–41. doi:10.1007/s12265-013-9518-4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hiesinger W, Perez-Aguilar JM, Atluri P, Marotta NA, Frederick JR, Fitzpatrick 3rd JR, et al. Computational protein design to reengineer stromal cell-derived factor-1alpha generates an effective and translatable angiogenic polypeptide analog. Circulation. 2011;124(11 Suppl):S18–26. doi:10.1161/CIRCULATIONAHA.110.009431.

    Article  PubMed  PubMed Central  Google Scholar 

  54. MacArthur Jr JW, Trubelja A, Shudo Y, Hsiao P, Fairman AS, Yang E, et al. Mathematically engineered stromal cell-derived factor-1alpha stem cell cytokine analog enhances mechanical properties of infarcted myocardium. J Thorac Cardiovasc Surg. 2013;145(1):278–84. doi:10.1016/j.jtcvs.2012.09.080.

    Article  CAS  PubMed  Google Scholar 

  55. Shudo Y, Cohen JE, Macarthur JW, Atluri P, Hsiao PF, Yang EC, et al. Spatially oriented, temporally sequential smooth muscle cell-endothelial progenitor cell bi-level cell sheet neovascularizes ischemic myocardium. Circulation. 2013;128(11 Suppl 1):S59–68. doi:10.1161/CIRCULATIONAHA.112.000293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Macarthur Jr JW, Cohen JE, McGarvey JR, Shudo Y, Patel JB, Trubelja A, et al. Preclinical evaluation of the engineered stem cell chemokine stromal cell-derived factor 1alpha analog in a translational ovine myocardial infarction model. Circ Res. 2014;114(4):650–9. doi:10.1161/CIRCRESAHA.114.302884.

    Article  CAS  PubMed  Google Scholar 

  57. • Purcell BP, Lobb D, Charati MB, Dorsey SM, Wade RJ, Zellars KN, et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat Mater. 2014;13(6):653–61. doi:10.1038/nmat3922. This manuscript nicely presents the multidimensionality of hydrogels in biotherapeutics, allowing for targeted delivery with spatiotemporal precision.

  58. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30(29):5409–16. doi:10.1016/j.biomaterials.2009.06.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59(8):751–63. doi:10.1016/j.jacc.2011.10.888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seif-Naraghi SB, Singelyn JM, Salvatore MA, Osborn KG, Wang JJ, Sampat U, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5(173):173ra25. doi:10.1126/scitranslmed.3005503.

    Article  PubMed  Google Scholar 

  61. Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci U S A. 2010;107(34):15211–6. doi:10.1073/pnas.1006442107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DH, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768–74. doi:10.1038/nmat3357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Joseph Woo MD.

Ethics declarations

Conflict of Interest

John W. MacArthur, Amanda N. Steele, Andrew B. Goldstone, Jeffrey E. Cohen, William Hiesinger, and Y. Joseph Woo each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine and Stem-cell Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacArthur, J.W., Steele, A.N., Goldstone, A.B. et al. Injectable Bioengineered Hydrogel Therapy in the Treatment of Ischemic Cardiomyopathy. Curr Treat Options Cardio Med 19, 30 (2017). https://doi.org/10.1007/s11936-017-0530-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0530-x

Keywords

Navigation