Skip to main content
Log in

Updates on Stress Imaging Testing and Myocardial Viability With Advanced Imaging Modalities

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Non-invasive stress testing plays a key role in diagnosis and risk stratification in patients with coronary artery disease. Technical advances in CT, MRI, and PET have lead to increased utility of these modalities in myocardial perfusion imaging. The aim of the review is to provide a succinct update on CT, PET, and MRI for myocardial stress perfusion imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

  1. Multimodality Writing Group for Stable Ischemic Heart Disease, Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Card Fail. 2014;20:65–90.

    Article  Google Scholar 

  2. Al-Mallah M, Kwong RY. Clinical application of cardiac CMR. Rev Cardiovasc Med. 2009;10:134–41.

    PubMed  Google Scholar 

  3. Cortigiani L, Bigi R, Sicari R. Is viability still viable after the STICH trial? Eur Heart J Cardiovasc Imaging. 2012;13:219–26.

    Article  PubMed  Google Scholar 

  4. Yang DH, Kim Y-H, Roh J-H, Kang J-W, Han D, Jung J, et al. Stress myocardial perfusion CT in patients suspected of having coronary artery disease: visual and quantitative analysis-validation by using fractional flow reserve. Radiology. 2015;276:715–23.

    Article  PubMed  Google Scholar 

  5. Pontone G, Andreini D, Guaricci AI, Guglielmo M, Mushtaq S, Baggiano A, et al. Rationale and design of the PERFECTION (comparison between stress cardiac computed tomography PERfusion versus Fractional flow rEserve measured by Computed Tomography angiography In the evaluation of suspected cOroNary artery disease) prospective study. J Cardiovasc Comput Tomogr. 2016;10:330–4.

    Article  PubMed  Google Scholar 

  6. Yang DH, KimY-H, Roh JH, Kang J-W, Ahn J-M, Kweon J, et al. Diagnostic performance of on-site CT-derived fractional flow reserve versus CT perfusion. Eur Heart J Cardiovasc Imaging. 2016. doi:10.1093/ehjci/jew094

  7. Magalhães TA, Kishi S, George RT, Arbab-Zadeh A, Vavere AL, Cox C, et al. Combined coronary angiography and myocardial perfusion by computed tomography in the identification of flow-limiting stenosis—the CORE320 study: an integrated analysis of CT coronary angiography and myocardial perfusion. J Cardiovasc Comput Tomogr. 2015;9:438–45.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Truong QA, Knaapen P, Pontone G, Andreini D, Leipsic J, Carrascosa P, et al. Rationale and design of the dual-energy computed tomography for ischemia determination compared to “gold standard” non-invasive and invasive techniques (DECIDE-Gold): a multicenter international efficacy diagnostic study of rest-stress dual-energy computed tomography angiography with perfusion. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2015;22:1031–40.

    Article  Google Scholar 

  9. Ladeiras-Lopes R, Bettencourt N, Ferreira N, Sampaio F, Pires-Morais G, Santos L, et al. CT myocardial perfusion and coronary CT angiography: influence of coronary calcium on a stress-rest protocol. J Cardiovasc Comput Tomogr. 2016;10:215–20.

    Article  PubMed  Google Scholar 

  10. Ghoshhajra BB, Maurovich-Horvat P, Techasith T, Medina HM, Verdini D, Sidhu MS, et al. Infarct detection with a comprehensive cardiac CT protocol. J Cardiovasc Comput Tomogr. 2012;6:14–23.

    Article  PubMed  Google Scholar 

  11. Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med Off Publ Soc Nucl Med. 2013;54:1485–507.

    Google Scholar 

  12. ASNC imaging guidelines for nuclear cardiology procedures—PET myocardial perfusion and metabolism clinical imaging—PET MP & Glucose Metabolism 2009.pdf [Internet]. [cited 2016 Nov 12]. Available from: http://www.asnc.org/files/PET%20MP%20&%20Glucose%20Metabolism%202009.pdf

  13. Sciagrà R, Passeri A, Bucerius J, Verberne HJ, Slart RHJA, Lindner O, et al. Clinical use of quantitative cardiac perfusion PET: rationale, modalities and possible indications. Position paper of the Cardiovascular Committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol Imaging. 2016;43:1530–45.

    Article  PubMed  Google Scholar 

  14. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. 1990;15:1032–42.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med Off Publ Soc Nucl Med. 1996;37:1701–12.

    CAS  Google Scholar 

  16. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med Off Publ Soc Nucl Med. 2014;55:248–55.

    Google Scholar 

  17. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  Google Scholar 

  19. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5:700–7.

    Article  PubMed  Google Scholar 

  20. Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26:147–86.

    Article  CAS  PubMed  Google Scholar 

  21. Senthamizhchelvan S, Bravo PE, Esaias C, Lodge MA, Merrill J, Hobbs RF, et al. Human biodistribution and radiation dosimetry of 82Rb. J Nucl Med Off Publ Soc Nucl Med. 2010;51:1592–9.

    Google Scholar 

  22. Stabin MG. Radiopharmaceuticals for nuclear cardiology: radiation dosimetry, uncertainties, and risk. J Nucl Med Off Publ Soc Nucl Med. 2008;49:1555–63.

    CAS  Google Scholar 

  23. Shah NR, Charytan DM, Murthy VL, Skali Lami H, Veeranna V, Cheezum MK, et al. Prognostic value of coronary flow reserve in patients with dialysis-dependent ESRD. J Am Soc Nephrol JASN. 2016;27:1823–9.

    Article  PubMed  Google Scholar 

  24. Van Tosh A, Votaw JR, Cooke CD, Reichek N, Palestro CJ, Nichols KJ. Relationships between left ventricular asynchrony and myocardial blood flow. J Nucl Cardiol. 2017;24(1):43–52.

  25. Legallois D, Belin A, Nesterov SV, Milliez P, Parienti J-J, Knuuti J, et al. Cardiac rehabilitation improves coronary endothelial function in patients with heart failure due to dilated cardiomyopathy: a positron emission tomography study. Eur J Prev Cardiol. 2016;23:129–36.

    Article  PubMed  Google Scholar 

  26. Christensen TE, Ahtarovski KA, Bang LE, Holmvang L, Søholm H, Ghotbi AA, et al. Basal hyperaemia is the primary abnormality of perfusion in Takotsubo cardiomyopathy: a quantitative cardiac perfusion positron emission tomography study. Eur Heart J Cardiovasc Imaging. 2015;16:1162–9.

    Article  PubMed  Google Scholar 

  27. Knudsen A, Christensen TE, Ghotbi AA, Hasbak P, Lebech A-M, Kjær A, et al. Normal myocardial flow reserve in HIV-infected patients on stable antiretroviral therapy: a cross-sectional study using rubidium-82 PET/CT. Medicine (Baltimore). 2015;94:e1886.

    Article  CAS  Google Scholar 

  28. Valenta I, Antoniou A, MarashdehW, Leucker T, Kasper E, Jones SR, et al. PET-measured longitudinal flow gradient correlates with invasive fractional flow reserve in CAD patients. Eur Heart J Cardiovasc Imaging. 2016. doi:10.1093/ehjci/jew116

  29. Dey D, Diaz Zamudio M, Schuhbaeck A, Juarez Orozco LE, Otaki Y, Gransar H, et al. Relationship between quantitative adverse plaque features from coronary computed tomography angiography and downstream impaired myocardial flow reserve by 13N-ammonia positron emission tomography: a pilot study. Circ Cardiovasc Imaging. 2015;8:e003255.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Assante R, Zampella E, Arumugam P, Acampa W, Imbriaco M, Tout D, et al. Quantitative relationship between coronary artery calcium and myocardial blood flow by hybrid rubidium-82 PET/CT imaging in patients with suspected coronary artery disease. J Nucl Cardiol. 2016. doi:10.1007/s12350-015-0359-1

  31. Bulluck H, White SK, Fröhlich GM, Casson SG, O’Meara C, Newton A, et al. Quantifying the area at risk in reperfused ST-segment-elevation myocardial infarction patients using hybrid cardiac positron emission tomography-magnetic resonance imaging. Circ Cardiovasc Imaging. 2016;9:e003900.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suda M, Onoguchi M, Tomiyama T, Ishihara K, Takahashi N, Sakurai M, et al. The reproducibility of time-of-flight PET and conventional PET for the quantification of myocardial blood flow and coronary flow reserve with (13)N-ammonia. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2016;23:457–72.

    Article  Google Scholar 

  33. Presotto L, Busnardo E, Perani D, Gianolli L, Gilardi MC, Bettinardi V. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2016;23:1086–97.

    Article  CAS  Google Scholar 

  34. Slomka PJ, Diaz-Zamudio M, Dey D, Motwani M, Brodov Y, Choi D, et al. Automatic registration of misaligned CT attenuation correction maps in Rb-82 PET/CT improves detection of angiographically significant coronary artery disease. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2015;22:1285–95.

    Article  Google Scholar 

  35. Hunter CRRN, Klein R, Beanlands RS, DeKemp RA. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging. Med Phys. 2016;43:1829.

    Article  PubMed  Google Scholar 

  36. Ahmed MAA, Xiao P, Xie Q. New approach for simultaneous respiratory and cardiac motion correction in cardiac PET (NAMC-CPET). Phys Med Biol. 2015;60:7779–804.

    Article  CAS  PubMed  Google Scholar 

  37. Klén R, Noponen T, Koikkalainen J, Lötjönen J, Thielemans K, Hoppela E, et al. Evaluation of motion-correction methods for dual-gated cardiac positron emission tomography/computed tomography imaging. Nucl Med Commun. 2016;37:956–68.

    Article  PubMed  Google Scholar 

  38. Monmeneu Menadas JV, Lopez-Lereu MP, Estornell Erill J, Garcia Gonzalez P, Igual Muñoz B, Maceira GA. Pharmacological stress cardiovascular magnetic resonance: feasibility and safety in a large multicentre prospective registry. Eur Heart J Cardiovasc Imaging. 2016;17:308–15.

    Article  PubMed  Google Scholar 

  39. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet Lond Engl. 2012;379:453–60.

    Article  Google Scholar 

  40. de Jong MC, Genders TSS, van Geuns R-J, Moelker A, Hunink MGM. Diagnostic performance of stress myocardial perfusion imaging for coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2012;22:1881–95.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Heydari B, Juan Y-H, Liu H, Abbasi S, Shah R, Blankstein R, et al. Stress perfusion cardiac magnetic resonance imaging effectively risk stratifies diabetic patients with suspected myocardial ischemia. Circ Cardiovasc Imaging. 2016;9:e004136.

    PubMed  PubMed Central  Google Scholar 

  42. Kim RJ, Albert TSE, Wible JH, Elliott MD, Allen JC, Lee JC, et al. Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation. 2008;117:629–37.

    Article  PubMed  Google Scholar 

  43. Ibrahim T, Bülow HP, Hackl T, Hörnke M, Nekolla SG, Breuer M, et al. Diagnostic value of contrast-enhanced magnetic resonance imaging and single-photon emission computed tomography for detection of myocardial necrosis early after acute myocardial infarction. J Am Coll Cardiol. 2007;49:208–16.

    Article  PubMed  Google Scholar 

  44. Pegg TJ, Selvanayagam JB, Jennifer J, Francis JM, Karamitsos TD, Dall’Armellina E, et al. Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:56.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Buss SJ, Krautz B, Hofmann N, Sander Y, Rust L, Giusca S, et al. Prediction of functional recovery by cardiac magnetic resonance feature tracking imaging in first time ST-elevation myocardial infarction. Comparison to infarct size and transmurality by late gadolinium enhancement. Int J Cardiol. 2015;183:162–70.

    Article  PubMed  Google Scholar 

  46. Wu KC, Kim RJ, Bluemke DA, Rochitte CE, Zerhouni EA, Becker LC, et al. Quantification and time course of microvascular obstruction by contrast-enhanced echocardiography and magnetic resonance imaging following acute myocardial infarction and reperfusion. J Am Coll Cardiol. 1998;32:1756–64.

    Article  CAS  PubMed  Google Scholar 

  47. Wu KC. CMR of microvascular obstruction and hemorrhage in myocardial infarction. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2012;14:68.

    Google Scholar 

  48. van Gaal WJ, Banning AP. Percutaneous coronary intervention and the no-reflow phenomenon. Expert Rev Cardiovasc Ther. 2007;5:715–31.

    Article  PubMed  Google Scholar 

  49. Jerosch-Herold M. Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson. 2010;12:57.

    Article  Google Scholar 

  50. Coelho-Filho OR, Rickers C, Kwong RY, Jerosch-Herold M. MR myocardial perfusion imaging. Radiology. 2013;266:701–15.

    Article  PubMed  Google Scholar 

  51. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging. 2002;18:539–42.

    PubMed  Google Scholar 

  52. Gupta A, Lee VS, Chung Y-C, Babb JS, Simonetti OP. Myocardial infarction: optimization of inversion times at delayed contrast-enhanced MR imaging. Radiology. 2004;233:921–6.

    Article  PubMed  Google Scholar 

  53. Jimenez Juan L, Crean AM, Wintersperger BJ. Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. Radiol Clin North Am. 2015;53:397–411.

    Article  PubMed  Google Scholar 

  54. Yun C-H, Tsai J-P, Tsai C-T, Mok GSP, Sun J-Y, Hung C-L, et al. Qualitative and semi-quantitative evaluation of myocardium perfusion with 3 T stress cardiac MRI. BMC Cardiovasc Disord. 2015;15:164.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Heydari B, Kwong RY, Jerosch-Herold M. Technical advances and clinical applications of quantitative myocardial blood flow imaging with cardiac MRI. Prog Cardiovasc Dis. 2015;57:615–22.

    Article  PubMed  Google Scholar 

  56. Sharif B, Dharmakumar R, LaBounty T, Arsanjani R, Shufelt C, Thomson L, et al. Towards elimination of the dark-rim artifact in first-pass myocardial perfusion MRI: removing Gibbs ringing effects using optimized radial imaging: toward elimination of dark-rim artifacts in first-pass perfusion CMR. Magn Reson Med. 2014;72:124–36.

    Article  PubMed  Google Scholar 

  57. Sharif B, Arsanjani R, Dharmakumar R, Bairey Merz CN, Berman DS, Li D. All-systolic non-ECG-gated myocardial perfusion MRI: feasibility of multi-slice continuous first-pass imaging. Magn Reson Med. 2015;74:1661–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bi X, Wei J, Yang H-J, Dharmakumar R, Arsanjani R, et al. First-pass myocardial perfusion MRI with reduced subendocardial dark-rim artifact using optimized Cartesian sampling. J Magn Reson Imaging JMRI. 2017;45(2):542–55.

  59. Manisty C, Ripley DP, Herrey AS, Captur G, Wong TC, Petersen SE, et al. Splenic switch-off: a tool to assess stress adequacy in adenosine perfusion cardiac MR imaging. Radiology. 2015;276:732–40.

    Article  PubMed  Google Scholar 

  60. Shin T, Nayak KS, Santos JM, Nishimura DG, Hu BS, McConnell MV. Three-dimensional first-pass myocardial perfusion MRI using a stack-of-spirals acquisition. Magn Reson Med. 2013;69:839–44.

    Article  PubMed  Google Scholar 

  61. Raman SV, Dickerson JA, Mazur W, Wong TC, B Schelbert E, Min JK, et al. Diagnostic performance of treadmill exercise cardiac magnetic resonance: the prospective, multicenter exercise CMR’s accuracy for cardiovascular stress testing (EXACT) trial. J Am Heart Assoc. 2016;5(8): e003811.

  62. Dilsizian V. Cardiac magnetic resonance versus SPECT: are all noninfarct myocardial regions created equal? J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2007;14:9–14.

    Article  Google Scholar 

  63. Rischpler C, Dirschinger RJ, Nekolla SG, Kossmann H, Nicolosi S, Hanus F, et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging. 2016;9:e004316.

    PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

Conception and design: SH, MO, DV

Administrative support: MO, BG

Manuscript writing: all authors

Final approval of manuscript: all authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian B. Ghoshhajra MD, MBA.

Ethics declarations

Conflict of Interest

Sandeep S. Hedgire, Michael Osborne, and Daniel J. Verdini each declare no potential conflicts of interest. Brian B. Ghoshhajra reports personal fees from Medtronic and Siemens.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedgire, S.S., Osborne, M., Verdini, D.J. et al. Updates on Stress Imaging Testing and Myocardial Viability With Advanced Imaging Modalities. Curr Treat Options Cardio Med 19, 26 (2017). https://doi.org/10.1007/s11936-017-0525-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0525-7

Keywords

Navigation