Skip to main content
Log in

Role of Imaging in Evaluating Infiltrative Heart Disease

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Infiltrative heart disease is caused by the deposition of abnormal substances in the heart and can lead to abnormalities in cardiac function and electrical conduction. Advances in non-invasive cardiovascular imaging have allowed for improved diagnosis of infiltrative heart disease, as well as ways to track disease progression or regression, thus enabling a mechanism to follow response to therapy. In this review, we provide an overview of the role of imaging in the diagnosis and management of cardiac sarcoidosis (CS) and cardiac amyloidosis (CA), as well as outline a proposed algorithm for using non-invasive cardiovascular imaging for evaluating these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seward JB, Casaclang-Verzosa G. Infiltrative cardiovascular diseases: cardiomyopathies that look alike. J Am Coll Cardiol. 2010;55(17):1769–79. doi:10.1016/j.jacc.2009.12.040.

    Article  PubMed  Google Scholar 

  2. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA. 2011;305(4):391–9. doi:10.1001/jama.2011.10.

    Article  CAS  PubMed  Google Scholar 

  3. Rybicki BA, Major M, Popovich J, Maliarik MJ, Iannuzzi MC. Racial differences in sarcoidosis incidence: a 5-year study in a health maintenance organization. Am J Epidemiol. 1997;145(3):234–41.

    Article  CAS  PubMed  Google Scholar 

  4. •• Blankstein R, Waller AH. Evaluation of known or suspected cardiac sarcoidosis. Circ Cardiovasc Imaging. 2016;9(3):e000867. doi:10.1161/CIRCIMAGING.113.000867. Comprehensive review of the use of multi-modality imaging in cardiac sarcoidosis.

    Article  PubMed  Google Scholar 

  5. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58(6):1204–11.

    Article  CAS  PubMed  Google Scholar 

  6. Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College Of Cardiology, and the European Society Of Cardiology Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society Of Cardiology. Eur Heart J. 2007;28(24):3076–93. doi:10.1093/eurheartj/ehm456.

    Article  PubMed  Google Scholar 

  7. Yazaki Y, Isobe M, Hiroe M, Morimoto S, Hiramitsu S, Nakano T, et al. Prognostic determinants of long-term survival in Japanese patients with cardiac sarcoidosis treated with prednisone. Am J Cardiol. 2001;88(9):1006–10.

    Article  CAS  PubMed  Google Scholar 

  8. Grutters JC, van den Bosch JM. Corticosteroid treatment in sarcoidosis. Eur Respir J. 2006;28(3):627–36. doi:10.1183/09031936.06.00105805.

    Article  CAS  PubMed  Google Scholar 

  9. Paz HL, McCormick DJ, Kutalek SP, Patchefsky A. The automated implantable cardiac defibrillator. Prophylaxis in cardiac sarcoidosis. Chest. 1994;106(5):1603–7.

    Article  CAS  PubMed  Google Scholar 

  10. •• Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11(7):1305–23. doi:10.1016/j.hrthm.2014.03.043. Heart Rhythm Society expert consensus statement on cardiac sarcoidosis.

    Article  PubMed  Google Scholar 

  11. Hiraga H, Iwai K, Hiroe M, Omori F, Sekiguchi M, Tachibana T. Guideline for diagnosis of cardiac sarcoidosis: study report on diffuse pulmonary diseases from the Japanese Ministry Of Health And Welfare. Tokyo: Japanese Ministry of Health and Welfare; 1993. p. 23–4.

    Google Scholar 

  12. Hiraga H, Yuwai K, Hiroe M. Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis Granulomatous Disord. 2007;89–102.

  13. Hulten E, Aslam S, Osborne M, Abbasi S, Bittencourt MS, Blankstein R. Cardiac sarcoidosis-state of the art review. Cardiovasc Diagn Ther. 2016;6(1):50–63. doi:10.3978/j.issn.2223-3652.2015.12.13.

    PubMed  PubMed Central  Google Scholar 

  14. Okada DR, Bravo PE, Vita T, Agarwal V, Osborne MT, Taqueti VR, et al. Isolated cardiac sarcoidosis: a focused review of an under-recognized entity. J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0658-1.

    Google Scholar 

  15. Lewin RF, Mor R, Spitzer S, Arditti A, Hellman C, Agmon J. Echocardiographic evaluation of patients with systemic sarcoidosis. Am Heart J. 1985;110(1 Pt 1):116–22.

    Article  CAS  PubMed  Google Scholar 

  16. Burstow DJ, Tajik AJ, Bailey KR, DeRemee RA, Taliercio CP. Two-dimensional echocardiographic findings in systemic sarcoidosis. Am J Cardiol. 1989;63(7):478–82.

    Article  CAS  PubMed  Google Scholar 

  17. Fahy GJ, Marwick T, McCreery CJ, Quigley PJ, Maurer BJ. Doppler echocardiographic detection of left ventricular diastolic dysfunction in patients with pulmonary sarcoidosis. Chest. 1996;109(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  18. Patel AR, Klein MR, Chandra S, Spencer KT, Decara JM, Lang RM, et al. Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail. 2011;13(11):1231–7. doi:10.1093/eurjhf/hfr099.

    Article  PubMed  Google Scholar 

  19. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest. 2008;133(6):1426–35. doi:10.1378/chest.07-2784.

    Article  PubMed  Google Scholar 

  20. Joyce E, Ninaber MK, Katsanos S, Debonnaire P, Kamperidis V, Bax JJ, et al. Subclinical left ventricular dysfunction by echocardiographic speckle-tracking strain analysis relates to outcome in sarcoidosis. Eur J Heart Fail. 2015;17(1):51–62. doi:10.1002/ejhf.205.

    Article  PubMed  Google Scholar 

  21. Lo A, Foder K, Martin P, Younger JF. Response to steroid therapy in cardiac sarcoidosis: insights from myocardial strain. Eur Heart J Cardiovasc Imaging. 2012;13(2):E3. doi:10.1093/ejechocard/jer184.

    Article  PubMed  Google Scholar 

  22. Smedema JP, Snoep G, van Kroonenburgh MP, van Geuns RJ, Dassen WR, Gorgels AP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol. 2005;45(10):1683–90. doi:10.1016/j.jacc.2005.01.047.

    Article  PubMed  Google Scholar 

  23. • Hulten E, Agarwal V, Cahill M, Cole G, Vita T, Parrish S, et al. Presence of late gadolinium enhancement by cardiac magnetic resonance among patients with suspected cardiac sarcoidosis is associated with adverse cardiovascular prognosis: a systematic review and meta-analysis. Circ Cardiovasc Imaging. 2016;9(9):e005001. doi:10.1161/CIRCIMAGING.116.005001. Meta analysis which describes the prognostic importance of LGE on CMR among patients with suspected cardiac sarcoidosis.

    Article  PubMed  Google Scholar 

  24. Crouser ED, Ono C, Tran T, He X, Raman SV. Improved detection of cardiac sarcoidosis using magnetic resonance with myocardial T2 mapping. Am J Respir Crit Care Med. 2014;189(1):109–12. doi:10.1164/rccm.201309-1668LE.

    PubMed  PubMed Central  Google Scholar 

  25. • Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–36. doi:10.1016/j.jacc.2013.09.022. Describes the prognostic importance of cardiac PET findings among patients with suspected cardiac sarcoidosis.

    Article  PubMed  Google Scholar 

  26. Osborne MT, Hulten EA, Murthy VL, Skali H, Taqueti VR, Dorbala S, et al. Patient preparation for cardiac fluorine-18 fluorodeoxyglucose positron emission tomography imaging of inflammation. J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0502-7.

    Google Scholar 

  27. Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53(2):241–8. doi:10.2967/jnumed.111.090662.

    Article  CAS  PubMed  Google Scholar 

  28. Ahmadian A, Brogan A, Berman J, Sverdlov AL, Mercier G, Mazzini M, et al. Quantitative interpretation of FDG PET/CT with myocardial perfusion imaging increases diagnostic information in the evaluation of cardiac sarcoidosis. J Nucl Cardiol. 2014;21(5):925–39. doi:10.1007/s12350-014-9901-9.

    Article  PubMed  Google Scholar 

  29. Osborne MT, Hulten EA, Singh A, Waller AH, Bittencourt MS, Stewart GC, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014;21(1):166–74. doi:10.1007/s12350-013-9828-6.

    Article  PubMed  Google Scholar 

  30. Falk RH, Alexander KM, Liao R, Dorbala S. AL (light-chain) cardiac amyloidosis: a review of diagnosis and therapy. J Am Coll Cardiol. 2016;68(12):1323–41. doi:10.1016/j.jacc.2016.06.053.

    Article  PubMed  Google Scholar 

  31. Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585–94. doi:10.1093/eurheartj/ehv338.

    Article  PubMed  Google Scholar 

  32. •• Falk RH, Quarta CC, Dorbala S. How to image cardiac amyloidosis. Circ Cardiovasc Imaging. 2014;7(3):552–62. doi:10.1161/CIRCIMAGING.113.001396. Review on how to image cardiac amyloidosis.

    Article  PubMed  PubMed Central  Google Scholar 

  33. White JA, Fine NM. Recent advances in cardiovascular imaging relevant to the management of patients with suspected cardiac amyloidosis. Curr Cardiol Rep. 2016;18(8):77. doi:10.1007/s11886-016-0752-7.

    Article  PubMed  Google Scholar 

  34. Costa SP, Beaver TA, Rollor JL, Vanichakarn P, Magnus PC, Palac RT. Quantification of the variability associated with repeat measurements of left ventricular two-dimensional global longitudinal strain in a real-world setting. J Am Soc Echocardiogr. 2014;27(1):50–4. doi:10.1016/j.echo.2013.08.021.

    Article  PubMed  Google Scholar 

  35. Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442–8. doi:10.1136/heartjnl-2012-302353.

    Article  PubMed  Google Scholar 

  36. • Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart. 2016;102(10):748–54. doi:10.1136/heartjnl-2015-308657. Describes the prognostic importance of relative regional strain ratio in cardiac amyloidosis.

    Article  PubMed  Google Scholar 

  37. Tendler A, Helmke S, Teruya S, Alvarez J, Maurer MS. The myocardial contraction fraction is superior to ejection fraction in predicting survival in patients with AL cardiac amyloidosis. Amyloid. 2015;22(1):61–6. doi:10.3109/13506129.2014.994202.

    Article  CAS  PubMed  Google Scholar 

  38. Kado Y, Obokata M, Nagata Y, Ishizu T, Addetia K, Aonuma K, et al. Cumulative burden of myocardial dysfunction in cardiac amyloidosis assessed using four-chamber cardiac strain. J Am Soc Echocardiogr. 2016. doi:10.1016/j.echo.2016.07.017.

    Google Scholar 

  39. • Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypersad SM, et al. Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation. 2015;132(16):1570–9. doi:10.1161/CIRCULATIONAHA.115.016567. Describes the prognostic value of LGE on CMR in patients with systemic amyloidosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raina S, Lensing SY, Nairooz RS, Pothineni NV, Hakeem A, Bhatti S, et al. Prognostic value of late gadolinium enhancement CMR in systemic amyloidosis. JACC Cardiovasc Imaging. 2016. doi:10.1016/j.jcmg.2016.01.036.

    PubMed  Google Scholar 

  41. Kwong RY, Heydari B, Abbasi S, Steel K, Al-Mallah M, Wu H, et al. Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function. Am J Cardiol. 2015;116(4):622–9. doi:10.1016/j.amjcard.2015.05.021.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mohty D, Boulogne C, Magne J, Varroud-Vial N, Martin S, Ettaif H, et al. Prognostic value of left atrial function in systemic light-chain amyloidosis: a cardiac magnetic resonance study. Eur Heart J Cardiovasc Imaging. 2016;17(9):961–9. doi:10.1093/ehjci/jew100.

    Article  PubMed  Google Scholar 

  43. Fontana M, Banypersad SM, Treibel TA, Abdel-Gadir A, Maestrini V, Lane T, et al. Differential myocyte responses in patients with cardiac transthyretin amyloidosis and light-chain amyloidosis: a cardiac MR imaging study. Radiology. 2015;277(2):388–97. doi:10.1148/radiol.2015141744.

    Article  PubMed  Google Scholar 

  44. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, et al. T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J. 2015;36(4):244–51. doi:10.1093/eurheartj/ehu444.

    Article  PubMed  Google Scholar 

  45. Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY. Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging. 2012;5(9):897–907. doi:10.1016/j.jcmg.2012.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bokhari S, Castano A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. (99m)Tc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6(2):195–201. doi:10.1161/CIRCIMAGING.112.000132.

    Article  PubMed  PubMed Central  Google Scholar 

  47. •• Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–12. doi:10.1161/CIRCULATIONAHA.116.021612. Review on non-biopsy-dependent diagnosis of TTR cardiac amyloidosis.

    Article  CAS  PubMed  Google Scholar 

  48. Rapezzi C, Quarta CC, Guidalotti PL, Pettinato C, Fanti S, Leone O, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging. 2011;4(6):659–70. doi:10.1016/j.jcmg.2011.03.016.

    Article  PubMed  Google Scholar 

  49. Haq M, Pawar S, Berk JL, Miller EJ, Ruberg FL. Can 99m-Tc-pyrophosphate aid in early detection of cardiac involvement in asymptomatic variant TTR amyloidosis? JACC Cardiovasc Imaging. 2016. doi:10.1016/j.jcmg.2016.06.003.

    PubMed  Google Scholar 

  50. • Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, et al. Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol. 2016. doi:10.1001/jamacardio.2016.2839. Describes the prognostic value of Tc-99m- Pyrophosphate scanning.

    PubMed  Google Scholar 

  51. Chen W, Dilsizian V. Molecular imaging of amyloidosis: will the heart be the next target after the brain? Curr Cardiol Rep. 2012;14(2):226–33. doi:10.1007/s11886-011-0239-5.

    Article  PubMed  Google Scholar 

  52. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjo L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med. 2013;54(2):213–20. doi:10.2967/jnumed.111.102053.

    Article  CAS  PubMed  Google Scholar 

  53. Lee SP, Lee ES, Choi H, Im HJ, Koh Y, Lee MH, et al. 11C-Pittsburgh B PET imaging in cardiac amyloidosis. JACC Cardiovasc Imaging. 2015;8(1):50–9. doi:10.1016/j.jcmg.2014.09.018.

    Article  PubMed  Google Scholar 

  54. Castano A, DeLuca A, Weinberg R, Pozniakoff T, Blaner WS, Pirmohamed A, et al. Serial scanning with technetium pyrophosphate (99mTc-PYP) in advanced ATTR cardiac amyloidosis. J Nucl Cardiol. 2015. doi:10.1007/s12350-015-0261-x.

    PubMed  PubMed Central  Google Scholar 

  55. Dorbala S, Vangala D, Semer J, Strader C, Bruyere Jr JR, Di Carli MF, et al. Imaging cardiac amyloidosis: a pilot study using (1)(8)F-florbetapir positron emission tomography. Eur J Nucl Med Mol Imaging. 2014;41(9):1652–62. doi:10.1007/s00259-014-2787-6.

    Article  CAS  PubMed  Google Scholar 

  56. Law WP, Wang WY, Moore PT, Mollee PN, Ng AC. Cardiac amyloid imaging with 18F-florbetaben positron emission tomography: a pilot study. J Nucl Med. 2016. doi:10.2967/jnumed.115.169870.

    PubMed  Google Scholar 

  57. Van Der Gucht A, Galat A, Rosso J, Guellich A, Garot J, Bodez D, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol. 2016;23(4):846–9. doi:10.1007/s12350-015-0287-0.

    Article  Google Scholar 

  58. Gagliardi C, Tabacchi E, Bonfiglioli R, Diodato S, Nanni C, Guidalotti P, et al. Does the etiology of cardiac amyloidosis determine the myocardial uptake of [18F]-NaF PET/CT? J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0457-8.

    PubMed  Google Scholar 

  59. Noordzij W, Glaudemans AW, van Rheenen RW, Hazenberg BP, Tio RA, Dierckx RA, et al. (123)I-Labelled metaiodobenzylguanidine for the evaluation of cardiac sympathetic denervation in early stage amyloidosis. Eur J Nucl Med Mol Imaging. 2012;39(10):1609–17. doi:10.1007/s00259-012-2187-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coutinho MC, Cortez-Dias N, Cantinho G, Conceicao I, Oliveira A, Bordalo e Sa A, et al. Reduced myocardial 123-iodine metaiodobenzylguanidine uptake: a prognostic marker in familial amyloid polyneuropathy. Circ Cardiovasc Imaging. 2013;6(5):627–36. doi:10.1161/CIRCIMAGING.112.000367.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Blankstein MD.

Ethics declarations

Conflict of Interest

Sanjay Divakaran, Bradley Collins, Tomas Vita, Marcelo F. Di Carli, and Ron Blankstein each declare no potential conflicts of interest.

Avinainder Singh is supported by the Janet and Stanley Cohen Cardiac Amyloidosis Fellowship.

Rodney H. Falk was supported by the Friends of Burt Glazov Cardiac Amyloidosis Fund and the Demarest Lloyd Jr. Foundation. Dr. Falk receives funds for consulting from Ionis Pharmaceuticals and Alnylam Pharmaceuticals and research support from GlaxoSmithKline.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divakaran, S., Singh, A., Collins, B. et al. Role of Imaging in Evaluating Infiltrative Heart Disease. Curr Treat Options Cardio Med 19, 3 (2017). https://doi.org/10.1007/s11936-017-0500-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0500-3

Keywords

Navigation