Skip to main content

Advertisement

Log in

Novel Therapies for Familial Hypercholesterolemia

  • Prevention (L Sperling and D Gaita, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Both HeFH and HoFH require dietary and lifestyle modification. Pharmacotherapy of adult HeFH patients is largely driven by the American Heart Association (AHA) algorithm. A high-potency statin is started initially with a goal low-density lipoprotein cholesterol (LDL-C) reduction of >50 %. The LDL-C target is adjusted to <100 or <70 mg/dL in subjects with coronary artery disease (CAD) with ezetimibe being second line. If necessary, a third adjunctive therapy, such as a PSCK9 inhibitor (not yet approved in children) or bile acid-binding resin, can be added. Finally, LDL-C apheresis can be considered in patients with LDL-C >300 mg/dL (or >200 mg/dL with significant CAD, although now approved for LDL-C as low as 160 mg/dL with CAD). Due to the early, severe LDL-C elevation in HoFH patients, concerning natural history, rarity of the condition, and nuances of treatment, all HoFH patients should be treated at a pediatric or adult center with HoFH experience. LDL-C apheresis should be considered as early as 5 years of age. However, apheresis availability and tolerability is limited and pharmacotherapy is required. Generally, the AHA algorithm with reference to the European Atherosclerosis Society Consensus Panel recommendations is reasonable with all patients initiated on high-dose, high-potency statin, ezetimibe, and bile acid-binding resins. In most, additional LDL-C lowering is required with PCSK9 inhibitors and/or lomitapide or mipomersen. Liver transplantation can also be considered at experienced centers as a last resort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liyanage KE, Burnett JR, Hooper AJ, van Bockxmeer FM. Familial hypercholesterolemia: epidemiology, Neolithic origins and modern geographic distribution. Crit Rev Clin Lab Sci. 2011;48:1–18.

    Article  CAS  PubMed  Google Scholar 

  2. Lehrman MA, Schneider WJ, Brown MS, Davis CG, Elhammer A, Russell DW, et al. The Lebanese allele at the low density lipoprotein receptor locus. Nonsense mutation produces truncated receptor that is retained in endoplasmic reticulum. J Biol Chem. 1987;262:401–10.

    CAS  PubMed  Google Scholar 

  3. Moorjani S, Roy M, Gagné C, Davignon J, Brun D, Toussaint M, et al. Homozygous familial hypercholesterolemia among French Canadians in Québec Province. Arterioscler Dallas Tex. 1989;9:211–6.

    Article  CAS  Google Scholar 

  4. Austin MA, Hutter CM, Zimmern RL, Humphries SE. Familial hypercholesterolemia and coronary heart disease: a HuGE association review. Am J Epidemiol. 2004;160:421–9.

    Article  PubMed  Google Scholar 

  5. Mabuchi H, Haba T, Ueda K, Ueda R, Tatami R, Ito S, et al. Serum lipids and coronary heart disease in heterozygous familial hypercholesterolemia in the Hokuriku District of Japan. Atherosclerosis. 1977;28:417–23.

    Article  CAS  PubMed  Google Scholar 

  6. Rubinsztein DC, van der Westhuyzen DR, Coetzee GA. Monogenic primary hypercholesterolaemia in South Africa. South Afr Med J Suid-Afr Tydskr Vir Geneeskd. 1994;84:339–44.

    CAS  Google Scholar 

  7. Bamimore MA, Zaid A, Banerjee Y, Al-Sarraf A, Abifadel M, Seidah NG, et al. Familial hypercholesterolemia mutations in the Middle Eastern and North African region: a need for a national registry. J Clin Lipidol. 2015;9:187–94.

    Article  PubMed  Google Scholar 

  8. Risk of fatal coronary heart disease in familial hypercholesterolaemia. Scientific Steering Committee on behalf of the Simon Broome Register Group. BMJ. 1991;303:893–896.

  9. Gidding SS, Champagne MA, de Ferranti SD, Defesche J, Ito MK, Knowles JW, et al. The agenda for familial hypercholesterolemia. A scientific statement from the American Heart Association. Circulation. 2015;132:2167–92. The American Heart Association’s guidelines on the treatment of HeFH and HoFH patients remains the standard on which treatment of these patients should be based.

    Article  PubMed  Google Scholar 

  10. Leigh SEA, Foster AH, Whittall RA, Hubbart CS, Humphries SE. Update and analysis of the University College London low density lipoprotein receptor familial hypercholesterolemia database. Ann Hum Genet. 2008;72:485–98.

    Article  CAS  PubMed  Google Scholar 

  11. Gaudet D, Vohl MC, Couture P, Moorjani S, Tremblay G, Perron P, et al. Contribution of receptor negative versus receptor defective mutations in the LDL-receptor gene to angiographically assessed coronary artery disease among young (25–49 years) versus middle-aged (50–64 years) men. Atherosclerosis. 1999;143:153–61.

    Article  CAS  PubMed  Google Scholar 

  12. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34:154–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lambert G, Sjouke B, Choque B, Kastelein JJP, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53:2515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bilheimer DW, Stone NJ, Grundy SM. Metabolic studies in familial hypercholesterolemia. Evidence for a gene-dosage effect in vivo. J Clin Invest. 1979;64:524–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goldstein J, Hobbs H, Brown M. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill Professional; 2001.

    Google Scholar 

  16. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34:3478–3490a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raal FJ, Santos RD. Homozygous familial hypercholesterolemia: current perspectives on diagnosis and treatment. Atherosclerosis. 2012;223:262–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111:1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haitas B, Baker SG, Meyer TE, Joffe BI, Seftel HC. Natural history and cardiac manifestations of homozygous familial hypercholesterolaemia. Q J Med. 1990;76:731–40.

    CAS  PubMed  Google Scholar 

  20. Naoumova RP, Thompson GR, Soutar AK. Current management of severe homozygous hypercholesterolaemias. Curr Opin Lipidol. 2004;15:413–22.

    Article  CAS  PubMed  Google Scholar 

  21. Gidding SS, Bookstein LC, Chomka EV. Usefulness of electron beam tomography in adolescents and young adults with heterozygous familial hypercholesterolemia. Circulation. 1998;98:2580–3.

    Article  CAS  PubMed  Google Scholar 

  22. Mortality in treated heterozygous familial hypercholesterolaemia: implications for clinical management. Scientific Steering Committee on behalf of the Simon Broome Register Group. Atherosclerosis. 1999;142:105–112.

  23. de Goma EM, Ahmad ZS, O’Brien EC, Kindt I, Shrader P, Newman CB, et al. Treatment gaps in adults with heterozygous familial hypercholesterolemia in the United States: data from the CASCADE-FH registry. Circ Cardiovasc Genet. 2016;9:240–9.

    Article  Google Scholar 

  24. Perak AM, Ning H, de Ferranti SD, Gooding HC, Wilkins JT, Lloyd-Jones DM. Long-term risk of atherosclerotic cardiovascular disease in US adults with the familial hypercholesterolemia phenotype. Circulation. 2016;134:9–19.

    Article  CAS  PubMed  Google Scholar 

  25. Stone NJ, Levy RI, Fredrickson DS, Verter J. Coronary artery disease in 116 kindred with familial type II hyperlipoproteinemia. Circulation. 1974;49:476–88.

    Article  CAS  PubMed  Google Scholar 

  26. Schmidt HH, Hill S, Makariou EV, Feuerstein IM, Dugi KA, Hoeg JM. Relation of cholesterol-year score to severity of calcific atherosclerosis and tissue deposition in homozygous familial hypercholesterolemia. Am J Cardiol. 1996;77:575–80.

    Article  CAS  PubMed  Google Scholar 

  27. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, et al. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia. J Am Coll Cardiol. 2016;67:2578–89.

    Article  CAS  PubMed  Google Scholar 

  28. Neil A, Cooper J, Betteridge J, Capps N, McDowell I, Durrington P, et al. Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study. Eur Heart J. 2008;29:2625–33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Versmissen J, Oosterveer DM, Yazdanpanah M, Defesche JC, Basart DC, Liem AH, et al. Efficacy of statins in familial hypercholesterolaemia: a long term cohort study. BMJ. 2008;337:a2423.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Benn M, Watts GF, Tybjaerg-Hansen A, Nordestgaard BG. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol-lowering medication. J Clin Endocrinol Metab. 2012;97:3956–64.

    Article  CAS  PubMed  Google Scholar 

  31. Perez de Isla L, Alonso R, Watts GF, Mata N, Saltijeral Cerezo A, Muñiz O, et al. Attainment of LDL-cholesterol treatment goals in patients with familial hypercholesterolemia: 5-year SAFEHEART registry follow-up. J Am Coll Cardiol. 2016;67:1278–85.

    Article  PubMed  Google Scholar 

  32. Pijlman AH, Huijgen R, Verhagen SN, Imholz BP, Liem AH, Kastelein JJ, et al. Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: a large cross-sectional study in the Netherlands. Atherosclerosis. 2010;209:189–94.

    Article  CAS  PubMed  Google Scholar 

  33. Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35:2146–57.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kolansky DM, Cuchel M, Clark BJ, Paridon S, McCrindle BW, Wiegers SE, et al. Longitudinal evaluation and assessment of cardiovascular disease in patients with homozygous familial hypercholesterolemia. Am J Cardiol. 2008;102:1438–43.

    Article  PubMed  Google Scholar 

  35. Widhalm K, Binder CB, Kreissl A, Aldover-Macasaet E, Fritsch M, Kroisboeck S, et al. Sudden death in a 4-year-old boy: a near-complete occlusion of the coronary artery caused by an aggressive low-density lipoprotein receptor mutation (W556R) in homozygous familial hypercholesterolemia. J Pediatr. 2011;158:167.

    Article  PubMed  Google Scholar 

  36. Sjouke B, Kusters DM, Kindt I, Besseling J, Defesche JC, Sijbrands EJ, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype–phenotype relationship, and clinical outcome. Eur Heart J. 2015;36:560–5.

    Article  PubMed  Google Scholar 

  37. Raal FJ, Pilcher GJ, Panz VR, van Deventer HE, Brice BC, Blom DJ, et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid-lowering therapy. Circulation. 2011;124:2202–7.

    Article  CAS  PubMed  Google Scholar 

  38. Ionis Pharmaceuticals, Inc. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IONIS ANGPTL3-LRx in Healthy Volunteers With Elevated Triglycerides and Subjects With Familial Hypercholesterolemia. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT02709850. Accessed 6 May 2016

  39. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354:1264–72.

    Article  CAS  PubMed  Google Scholar 

  40. Liang H, Chaparro-Riggers J, Strop P, Geng T, Sutton JE, Tsai D, et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J Pharmacol Exp Ther. 2012;340:228–36.

    Article  CAS  PubMed  Google Scholar 

  41. Lindholm MW, Elmén J, Fisker N, Hansen HF, Persson R, Møller MR, et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol Ther J Am Soc Gene Ther. 2012;20:376–81.

    Article  CAS  Google Scholar 

  42. Koren MJ, Lundqvist P, Bolognese M, Neutel JM, Monsalvo ML, Yang J, et al. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–40.

    Article  CAS  PubMed  Google Scholar 

  43. Blom DJ, Hala T, Bolognese M, Lillestol MJ, Toth PD, Burgess L, et al. A 52-week placebo-controlled trial of evolocumab in hyperlipidemia. N Engl J Med. 2014;370:1809–19.

    Article  CAS  PubMed  Google Scholar 

  44. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311:1870–82.

    Article  PubMed  Google Scholar 

  45. Raal FJ, Stein EA, Dufour R, Turner T, Civeira F, Burgess L, et al. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2015;385:331–40. This phase III trial of evolocumab in HeFH patients is the only published trial of evolocumab use specifically in HeFH. Evolocumab use led to a 60 % decrease in LDL-C as compared to placebo in patients already on aggressive lipid-lowering therapy.

    Article  CAS  Google Scholar 

  46. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1500–9. The OSLER trials, published just months before the FDA approval of evolocumab, demonstrated that evolocumab is not only safe and efficacious in reducing LDL-C, but these results are sustained out over nearly a year of follow-up. Additionally, while outcomes trials are ongoing, this trial gives the clearest indication of the potential benefit of evolocumab for cardiovascular outcomes.

    Article  CAS  PubMed  Google Scholar 

  47. Amgen. Evaluating PCSK9 Binding antiBody Influence oN coGnitive HeAlth in High cardiovascUlar Risk Subjects. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT02207634. Accessed 2 July 2016

  48. Roth EM, McKenney JM. ODYSSEY MONO: effect of alirocumab 75 mg subcutaneously every 2 weeks as monotherapy versus ezetimibe over 24 weeks. Future Cardiol. 2015;11:27–37.

    Article  CAS  PubMed  Google Scholar 

  49. Moriarty PM, Thompson PD, Cannon CP, Guyton JR, Bergeron J, Zieve FJ, et al. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: The ODYSSEY ALTERNATIVE randomized trial. J Clin Lipidol. 2015;9:758–69.

    Article  PubMed  Google Scholar 

  50. Kereiakes DJ, Robinson JG, Cannon CP, Lorenzato C, Pordy R, Chaudhari U, et al. Efficacy and safety of the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am Heart J. 2015;169:906–15. e13.

    Article  CAS  PubMed  Google Scholar 

  51. Cannon CP, Cariou B, Blom D, McKenney JM, Lorenzato C, Pordy R, et al. Efficacy and safety of alirocumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur Heart J. 2015;36:1186–94.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bays H, Gaudet D, Weiss R, Ruiz JL, Watts GF, Gouni-Berthold I, et al. Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY OPTIONS I randomized trial. J Clin Endocrinol Metab. 2015;100:3140–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farnier M, Jones P, Severance R, Averna M, Steinhagen-Thiessen E, Colhoun HM, et al. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: the ODYSSEY OPTIONS II randomized trial. Atherosclerosis. 2016;244:138–46.

    Article  CAS  PubMed  Google Scholar 

  54. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Eng Med. 2015;372:1489–99. The ODYSSEY LONG TERM trial, similar to the OSLER trials of evolocumab, demonstrated the safety and efficacy out to 78 weeks, as well as suggesting a marked reduction in cardiovascular events even during this relatively short follow-up period.

    Article  CAS  Google Scholar 

  55. Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168:682–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sanofi. ODYSSEY Outcomes: Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT01663402?term=odyssey+outcomes&rank=1. Accessed 2 July 2016

  57. Kastelein JJP, Ginsberg HN, Langslet G, Hovingh GK, Ceska R, Dufour R, et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur Heart J. 2015;36:2996–3003. This large phase III study of alirocumab use in the HeFH population demonstrated similar LDL-C-lowering effects and safety profile to past studies of PCSK9 inhibitors, but also importantly showed that over 60 % of subjects achieved their LDL-C goals when alirocumab was added to statin therapy. This remarkable feat is an indicator of the potentially revolutionary role the PCSK9 inhibitors will play in HeFH subjects who are unable to achieve LDL-C goals on standard therapy alone.

    PubMed  PubMed Central  Google Scholar 

  58. Sanofi. Open Label Study of Long Term Safety Evaluation of Alirocumab. In: ClinicalTrials.gov. 2015. https://clinicaltrials.gov/ct2/show/NCT01954394?term=odyssey+ole&rank=1. Accessed 4 July 2016.

  59. Amgen. Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT01764633. Accessed 2 July 2016.

  60. Ballantyne CM, Neutel J, Cropp A, Duggan W, Wang EQ, Plowchalk D, et al. Results of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, from a randomized, placebo-controlled, dose-ranging study in statin-treated subjects with hypercholesterolemia. Am J Cardiol. 2015;115:1212–21.

    Article  CAS  PubMed  Google Scholar 

  61. Pfizer. The Evaluation of Bococizumab (PF-04950615;RN316) in Reducing the Occurrence of Major Cardiovascular Events in High Risk Subjects. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT01975376?term=bococizumab&rank=5. Accessed 5 July 2016.

  62. Pfizer. A 52 week study to assess the use of bococizumab (PF-04950615; RN316) In Subjects with heterozygous familial hypercholesterolemia. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT01968980?term=bococizumab&rank=8. Accessed 5 July 2016.

  63. Pfizer. The evaluation of bococizumab (PF-04950615; RN316) in Reducing the occurrence of major cardiovascular events in high risk subjects. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT01975389?term=spire+II&rank=4. Accessed 5 July 2016.

  64. Pfizer. Randomized clinical trial of bococizumab (PF-04950615; RN316) in Subjects with primary hyperlipidemia or mixed dyslipidemia At Risk Of Cardiovascular Events. In: ClinicalTrials.gov. 2016. https://clinicaltrials.gov/ct2/show/NCT02100514?term=spire-LL&rank=1. Accessed 10 July 2016.

  65. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  66. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  67. Cannon CP, Shah S, Dansky HM, Davidson M, Brinton EA, Gotto AM, et al. Determining the efficacy and tolerability investigators. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363:2406–15.

    Article  CAS  PubMed  Google Scholar 

  68. Kastelein JJP, Besseling J, Shah S, Bergeron J, Langslet G, Hovingh GK, et al. Anacetrapib as lipid-modifying therapy in patients with heterozygous familial hypercholesterolaemia (REALIZE): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Lond Engl. 2015;385:2153–61.

    Article  CAS  Google Scholar 

  69. University of Oxford. REVEAL: Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification (REVEAL). In: ClinicalTrials.gov. 2015. https://clinicaltrials.gov/ct2/show/NCT01252953?term=reveal+anacetrapib&rank=1. Accessed 2 July 2016.

  70. Hussain M, Iqbal J, Anwar K, Rava P, Dai K. Microsomal triglyceride transfer protein: a multifunctional protein. Front Biosci J Virtual Libr. 2003;8:s500–6.

    Article  CAS  Google Scholar 

  71. Cuchel M, Meagher EA, du Toit TH, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet Lond Engl. 2013;381:40–6.

    Article  CAS  Google Scholar 

  72. Stefanutti C, Blom DJ, Averna MR, Meagher EA, Theron H, Marais AD, et al. The lipid-lowering effects of lomitapide are unaffected by adjunctive apheresis in patients with homozygous familial hypercholesterolaemia - a post-hoc analysis of a Phase 3, single-arm, open-label trial. Atherosclerosis. 2015;240:408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sacks FM, Stanesa M, Hegele RA. Severe hypertriglyceridemia with pancreatitis: thirteen years’ treatment with lomitapide. JAMA Intern Med. 2014;174:443–4.

    Article  CAS  PubMed  Google Scholar 

  74. Aegerion Pharmaceuticals, Inc. Long Term, Follow-on Study of Lomitapide in Patients With Homozygous Familial Hypercholesterolemia. In: ClinicalTrials.gov. 2015.https://clinicaltrials.gov/ct2/show/NCT00943306?term=lomitapide+homozygous+phase+III&rank=1. Accessed 11 July 2016

  75. Rader DJ, Kastelein JJP. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation. 2014;129:1022–32.

    Article  PubMed  Google Scholar 

  76. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem. 2004;279:17181–9.

    Article  CAS  PubMed  Google Scholar 

  77. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2010;375:998–1006.

    Article  CAS  Google Scholar 

  78. Sanofi. An open-label extension study to assess the long-term safety and efficacy of ISIS 301012 (Mipomersen) in Patients with familial hypercholesterolemia or severe-hypercholesterolemia. In: Clinicaltrials.gov. 2015. https://clinicaltrials.gov/ct2/show/NCT00694109. Accessed 2 July 2016.

  79. Santos RD, Duell PB, East C, Guyton JR, Moriarty PM, Chin W, et al. Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur Heart J. 2015;36:566–75. In light of concerns about the tolerability and safety of mipomersen with long-term use, the results of this interim analysis are quite promising; however, follow-up of this study’s final results and additional long-term safety evaluation will be vital to informing the use of mipomersen as extended therapy in HoFH.

    Article  PubMed  Google Scholar 

  80. Stein EA, Dufour R, Gagne C, Gaudet D, East C, Donovan JM, et al. Apolipoprotein B synthesis inhibition with mipomersen in heterozygous familial hypercholesterolemia: results of a randomized, double-blind, placebo-controlled trial to assess efficacy and safety as add-on therapy in patients with coronary artery disease. Circulation. 2012;126:2283–92.

    Article  CAS  PubMed  Google Scholar 

  81. McGowan MP, Tardif JC, Ceska R, Burgess LJ, Soran H, Gouni-Berthold I, et al. Randomized, placebo-controlled trial of mipomersen in patients with severe hypercholesterolemia receiving maximally tolerated lipid-lowering therapy. PLoS One. 2012;7, e49006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kastelein JJ, Wedel MK, Baker BF, Su J, Bradley JD, Yu RZ, et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation. 2006;114:1729–35.

    Article  CAS  PubMed  Google Scholar 

  83. Akdim F, Visser ME, Tribble DL, Baker BF, Stroes ES, Yu R, et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol. 2010;105:1413–9.

    Article  CAS  PubMed  Google Scholar 

  84. Akdim F, Stroes ES, Sijbrands EJ, Tribble DL, Trip MD, Jukema JW, et al. Efficacy and safety of mipomersen, an antisense inhibitor of apolipoprotein B, in hypercholesterolemic subjects receiving stable statin therapy. J Am Coll Cardiol. 2010;55:1611–8.

    Article  CAS  PubMed  Google Scholar 

  85. Akdim F, Tribble DL, Flaim JD, Yu R, Su J, Geary RS, et al. Efficacy of apolipoprotein B synthesis inhibition in subjects with mild-to-moderate hyperlipidaemia. Eur Heart J. 2011;32:2650–9.

    Article  CAS  PubMed  Google Scholar 

  86. Thomas GS, Cromwell WC, Ali S, Chin W, Flaim JD, Davidson M. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2013;62:2178–84.

    Article  CAS  PubMed  Google Scholar 

  87. Lambert G, Chatelais M, Petrides F, Passard M, Thedrez A, Rye KA, et al. Normalization of low-density lipoprotein receptor expression in receptor defective homozygous familial hypercholesterolemia by inhibition of PCSK9 with alirocumab. J Am Coll Cardiol. 2014;64:2299–300.

    Article  PubMed  Google Scholar 

  88. Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal FJ. Effect of the proprotein convertase subtilisin/kexin 9 monoclonal antibody, AMG 145, in homozygous familial hypercholesterolemia. Circulation. 2013;128:2113–20.

    Article  CAS  PubMed  Google Scholar 

  89. Raal FJ, Honarpour N, Blom DJ, Hovingh GK, Xu F, Scott R, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl. 2015;385:341–50. This phase III trial demonstrated the efficacy of evolocumab in LDLR defective HoFH subjects and led to the extension of the indications for evolocumab to include HoFH.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua W. Knowles MD, PhD.

Ethics declarations

Conflict of Interest

Joshua W. Knowles: Research Grant paid to institution, not individual; Significant; American Heart Association (AHA National Innovative Research Grant 15IRG222930034), Amgen.

Justin Parizo and Ashish Sarraju each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parizo, J., Sarraju, A. & Knowles, J.W. Novel Therapies for Familial Hypercholesterolemia. Curr Treat Options Cardio Med 18, 64 (2016). https://doi.org/10.1007/s11936-016-0486-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0486-2

Keywords

Navigation