Skip to main content

Advertisement

Log in

Blood Pressure Management in Intracranial Hemorrhage: Current Challenges and Opportunities

  • Cerebrovascular Disease and Stroke (N Rost, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Non-traumatic intracranial hemorrhage (i.e. intracerebral hemorrhage [ICH] and subarachnoid hemorrhage [SAH]) are more life threatening and least treatable despite being less common than ischemic stroke. Elevated blood pressure (BP) is a strong predictor of poor outcome in both ICH and SAH. Data from a landmark clinical trial INTERACT 2, wherein 2839 participants enrolled with spontaneous ICH were randomly assigned to receive intensive (target systolic BP <140 mmHg) or guideline recommended BP lowering therapy (target systolic BP <180 mmHg), showed that intensive BP lowering was safe, and more favorable functional outcome and better overall health-related quality of life were seen in survivors in the intensive treatment group. These results contributed to the shift in European and American guidelines towards more aggressive early management of elevated BP in ICH. In contrast, the treatment of BP in SAH is less well defined and more complex. Although there is consensus that hypertension needs to be controlled to prevent rebleeding in the acute setting, induced hypertension in the later stages of SAH has questionable benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Krishnamurthi RV et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1(5):e259–81. This paper describes the burden of ischemic and hemorrhagic stroke between region and over time.

    Article  PubMed  PubMed Central  Google Scholar 

  2. van Asch CJ et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.

    Article  PubMed  Google Scholar 

  3. Anderson CS et al. Predicting survival for 1 year among different subtypes of stroke. Results from the Perth Community Stroke Study. Stroke. 1994;25(10):1935–44.

    Article  CAS  PubMed  Google Scholar 

  4. Tuhrim S et al. Prediction of intracerebral hemorrhage survival. Ann Neurol. 1988;24(2):258–63.

    Article  CAS  PubMed  Google Scholar 

  5. Barber M et al. Poor outcome in primary intracerebral haemorrhage: results of a matched comparison. Postgrad Med J. 2004;80(940):89–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Portenoy RK et al. Intracerebral haemorrhage: a model for the prediction of outcome. J Neurol Neurosurg Psychiatry. 1987;50(8):976–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tatu L et al. Primary intracerebral hemorrhages in the Besancon stroke registry. Initial clinical and CT findings, early course and 30-day outcome in 350 patients. Eur Neurol. 2000;43(4):209–14.

    Article  CAS  PubMed  Google Scholar 

  8. Smith EE et al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. Neurology. 2004;63(9):1606–12.

    Article  CAS  PubMed  Google Scholar 

  9. Brott T et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  10. Kazui S et al. Enlargement of spontaneous intracerebral hemorrhage. Incidence and time course. Stroke. 1996;27(10):1783–7.

    Article  CAS  PubMed  Google Scholar 

  11. Carhuapoma JR et al. Brain edema after human cerebral hemorrhage: a magnetic resonance imaging volumetric analysis. J Neurosurg Anesthesiol. 2003;15(3):230–3.

    Article  PubMed  Google Scholar 

  12. Butcher KS et al. Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke. 2004;35(8):1879–85.

    Article  PubMed  Google Scholar 

  13. Del Bigio MR et al. Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates. Stroke. 1996;27(12):2312–9. discussion 2319–20.

    Article  PubMed  Google Scholar 

  14. Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke. 2000;31(7):1721–7.

    Article  CAS  PubMed  Google Scholar 

  15. Willmot M, Leonardi-Bee J, Bath PM. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension. 2004;43(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  16. Becker KJ et al. Extravasation of radiographic contrast is an independent predictor of death in primary intracerebral hemorrhage. Stroke. 1999;30(10):2025–32.

    Article  CAS  PubMed  Google Scholar 

  17. Mayer SA et al. Neurologic deterioration in noncomatose patients with supratentorial intracerebral hemorrhage. Neurology. 1994;44(8):1379–84.

    Article  CAS  PubMed  Google Scholar 

  18. Broderick JP et al. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke. 2007;38(3):1072–5.

    Article  CAS  PubMed  Google Scholar 

  19. Kazui S et al. Predisposing factors to enlargement of spontaneous intracerebral hematoma. Stroke. 1997;28(12):2370–5.

    Article  CAS  PubMed  Google Scholar 

  20. Gebel Jr JM et al. Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke. 2002;33(11):2631–5.

    Article  PubMed  Google Scholar 

  21. Arakawa S et al. Blood pressure control and recurrence of hypertensive brain hemorrhage. Stroke. 1998;29(9):1806–9.

    Article  CAS  PubMed  Google Scholar 

  22. van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management. Brain. 2001;124(Pt 2):249–78.

    Article  PubMed  Google Scholar 

  23. Connolly Jr ES et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2012;43(6):1711–37.

    Article  PubMed  Google Scholar 

  24. Ohkuma H, Tsurutani H, Suzuki S. Incidence and significance of early aneurysmal rebleeding before neurosurgical or neurological management. Stroke. 2001;32(5):1176–80.

    Article  CAS  PubMed  Google Scholar 

  25. Starke RM, Connolly Jr ES. Rebleeding after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2011;15(2):241–6.

    Article  CAS  PubMed  Google Scholar 

  26. Broderick JP et al. Major risk factors for aneurysmal subarachnoid hemorrhage in the young are modifiable. Stroke. 2003;34(6):1375–81.

    Article  PubMed  Google Scholar 

  27. Tang C, Zhang TS, Zhou LF. Risk factors for rebleeding of aneurysmal subarachnoid hemorrhage: a meta-analysis. PLoS One. 2014;9(6):e99536.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Alqadri SL, Sreenivasan V, Qureshi AI. Acute hypertensive response management in patients with acute stroke. Curr Cardiol Rep. 2013;15(12):426.

    Article  PubMed  Google Scholar 

  29. Carhuapoma JR, Ulatowski JA. Blood pressure control after intracerebral hemorrhage: have we reached the target? Crit Care Med. 2006;34(7):2023–4.

    Article  PubMed  Google Scholar 

  30. Zazulia AR et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21(7):804–10.

    Article  CAS  PubMed  Google Scholar 

  31. Schellinger PD et al. Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke. 2003;34(7):1674–9.

    Article  PubMed  Google Scholar 

  32. Herweh C et al. Perfusion CT in hyperacute cerebral hemorrhage within 3 hours after symptom onset: is there an early perihemorrhagic penumbra? J Neuroimaging. 2010;20(4):350–3.

    Article  PubMed  Google Scholar 

  33. Olivot JM et al. MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke. 2010;41(11):2681–3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Butcher KS et al. The intracerebral hemorrhage acutely decreasing arterial pressure trial. Stroke. 2013;44(3):620–6. An important trial showing rapid BP lowering after a moderate volume of ICH does not reduce perihematoma CBF.

    Article  PubMed  Google Scholar 

  35. Gould B et al. Autoregulation of cerebral blood flow is preserved in primary intracerebral hemorrhage. Stroke. 2013;44(6):1726–8.

    Article  CAS  PubMed  Google Scholar 

  36. Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH) Investigators. Crit Care Med, 2010;38(2):637–48.

  37. Anderson CS et al. Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT). Stroke. 2010;41(2):307–12.

    Article  PubMed  Google Scholar 

  38. Anderson CS et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368(25):2355–65. This is the largest randomized trial providing evidence that intensive BP lowering improves functional outcome in patients with ICH.

    Article  CAS  PubMed  Google Scholar 

  39. Sakamoto Y et al. Systolic blood pressure after intravenous antihypertensive treatment and clinical outcomes in hyperacute intracerebral hemorrhage: the stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke. 2013;44(7):1846–51.

    Article  CAS  PubMed  Google Scholar 

  40. Tsivgoulis G et al. Intensive blood pressure reduction in acute intracerebral hemorrhage: a meta-analysis. Neurology. 2014;83(17):1523–9. This is a meta-analysis of four studies showing intensive BP lowering is safe and attenuates hematoma growth at 24 hours.

    Article  PubMed  Google Scholar 

  41. Anderson CS, Qureshi AI. Implications of INTERACT2 and other clinical trials: blood pressure management in acute intracerebral hemorrhage. Stroke. 2015;46(1):291–5.

    Article  PubMed  Google Scholar 

  42. Steiner T et al. European Stroke Organisation (ESO) guidelines for the management of spontaneous intracerebral hemorrhage. Int J Stroke. 2014;9(7):840–55. ESO updated guidelines of BP manangement in spontaneous ICH.

    Article  PubMed  Google Scholar 

  43. Hemphill 3rd JC et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals From the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60. AHA/ASA updated guidelines of BP manangement in spontaneous ICH.

    Article  PubMed  Google Scholar 

  44. Biffi A et al. Association between blood pressure control and risk of recurrent intracerebral hemorrhage. JAMA. 2015;314(9):904–12.

    Article  CAS  PubMed  Google Scholar 

  45. Biffi A et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology. 2010;75(8):693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85(6):660–7.

    Article  PubMed  Google Scholar 

  47. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001. 358(9287):1033–41.

  48. Chapman N et al. Effects of a perindopril-based blood pressure-lowering regimen on the risk of recurrent stroke according to stroke subtype and medical history: the PROGRESS Trial. Stroke. 2004;35(1):116–21.

    Article  CAS  PubMed  Google Scholar 

  49. Arima H et al. Lower target blood pressures are safe and effective for the prevention of recurrent stroke: the PROGRESS trial. J Hypertens. 2006;24(6):1201–8.

    Article  CAS  PubMed  Google Scholar 

  50. Benavente OR et al. Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet. 2013;382(9891):507–15.

    Article  CAS  PubMed  Google Scholar 

  51. Leonardi-Bee J et al. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33(5):1315–20.

    Article  PubMed  Google Scholar 

  52. Odden MC et al. Achieved blood pressure and outcomes in the secondary prevention of small subcortical strokes trial. Hypertension. 2016;67(1):63–9.

    CAS  PubMed  Google Scholar 

  53. Arima H et al. Optimal achieved blood pressure in acute intracerebral hemorrhage: INTERACT2. Neurology. 2015;84(5):464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103-16.

  55. Xie X et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2015.

  56. Zahuranec DB et al. Poor long-term blood pressure control after intracerebral hemorrhage. Stroke. 2012;43(10):2580–5. An important study demonstrating that long-term BP control in patients with ICH is inadequate.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wei JW et al. Current management of intracerebral haemorrhage in China: a national, multi-centre, hospital register study. BMC Neurol. 2011;11:16.

    PubMed  PubMed Central  Google Scholar 

  58. Kim YZ et al. Clinical analysis of factors predisposing the recurrence of primary intracerebral hemorrhage in patients taking anti-hypertensive drugs: a prospective cohort study. Clin Neurol Neurosurg. 2013;115(5):578–86.

    Article  PubMed  Google Scholar 

  59. Cushman WC et al. Blood pressure control by drug group in the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Clin Hypertens (Greenwich). 2008;10(10):751–60.

    Article  CAS  Google Scholar 

  60. Johnston A, Stafylas P, Stergiou GS. Effectiveness, safety and cost of drug substitution in hypertension. Br J Clin Pharmacol. 2010;70(3):320–34.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Elliott WJ. What factors contribute to the inadequate control of elevated blood pressure? J Clin Hypertens (Greenwich). 2008;10(1 Suppl 1):20–6.

    Article  Google Scholar 

  62. Gregoire J et al. Predictors of self-reported noncompliance with antihypertensive drug treatment: a prospective cohort study. Can J Cardiol. 2006;22(4):323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Steiner T et al. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis. 2013;35(2):93–112.

    Article  PubMed  Google Scholar 

  64. Schmidt JM et al. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg. 2008;109(6):1052–9.

    Article  PubMed  Google Scholar 

  65. Kawabata Y et al. Clinical predictors of delayed cerebral ischemia after subarachnoid hemorrhage: first experience with coil embolization in the management of ruptured cerebral aneurysms. J Neurointerv Surg. 2011;3(4):344–7.

    Article  PubMed  Google Scholar 

  66. Raya AK, Diringer MN. Treatment of subarachnoid hemorrhage. Crit Care Clin. 2014;30(4):719–33.

    Article  PubMed  Google Scholar 

  67. Muench E et al. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35(8):1844–51. quiz 1852.

    Article  PubMed  Google Scholar 

  68. Ray WZ et al. Near-complete resolution of angiographic cerebral vasospasm after extreme elevation of mean arterial pressure: case report. Surg Neurol. 2009;72(4):347–53. discussion 353–4.

    Article  PubMed  Google Scholar 

  69. Dankbaar JW et al. Effect of different components of triple-H therapy on cerebral perfusion in patients with aneurysmal subarachnoid haemorrhage: a systematic review. Crit Care. 2010;14(1):R23.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Amin-Hanjani S et al. Hypertensive encephalopathy as a complication of hyperdynamic therapy for vasospasm: report of two cases. Neurosurgery. 1999;44(5):1113–6.

    Article  CAS  PubMed  Google Scholar 

  71. Wartenberg KE, Parra A. CT and CT-perfusion findings of reversible leukoencephalopathy during triple-H therapy for symptomatic subarachnoid hemorrhage-related vasospasm. J Neuroimaging. 2006;16(2):170–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Anderson MD, PhD.

Ethics declarations

Conflict of Interest

Cheryl Carcel, Shoichiro Sato and Craig S. Anderson each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cerebrovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carcel, C., Sato, S. & Anderson, C.S. Blood Pressure Management in Intracranial Hemorrhage: Current Challenges and Opportunities. Curr Treat Options Cardio Med 18, 22 (2016). https://doi.org/10.1007/s11936-016-0444-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0444-z

Keywords

Navigation