Skip to main content

Advertisement

Log in

Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine

  • Regenerative Medicine and Stem-cell Therapy (S Wu and P Hsieh, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Adult human cardiomyocytes are terminally differentiated and have limited capacity for cell division. Hence, they are not naturally replaced following ischemic injury to the heart. As such, cardiac function is often permanently compromised after an event such as myocardial infarction. In recent years, investigators have focused intensively on ways to reactivate cardiomyocyte mitotic activity in both in vitro cell culture systems and in vivo animal models. In parallel, advances in stem cell biology have allowed for the mass production of patient-specific human cardiomyocytes from human-induced pluripotent stem cells. These cells can be produced via chemically defined differentiation of human pluripotent stem cells in a matter of weeks and could theoretically be utilized directly for therapeutic purposes to replace damaged myocardium. However, stem cell-derived cardiomyocytes, like their adult counterparts, are post-mitotic and incapable of large-scale expansion after reaching a certain stage of in vitro differentiation. Due to this shared characteristic, these stem cell-derived cardiomyocytes may provide a platform for studying genes, pathways, and small molecules that induce cell cycle reentry and proliferation of human cardiomyocytes. Ultimately, the discovery of novel mechanisms or pathways to induce human cardiomyocyte proliferation should improve our ability to regenerate adult cardiomyocytes and help restore cardiac function following injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127:749–56.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187:249–53.

    Article  CAS  PubMed  Google Scholar 

  3. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188–90.

    Article  CAS  PubMed  Google Scholar 

  4. Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28:1737–46.

    Article  CAS  PubMed  Google Scholar 

  5. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078–80. This study was the first to demonstrate that the mammalian heart harbors some regenerative potential via cardiomyocyte proliferation, but that this ability is lost quickly after birth.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sturzu AC, Rajarajan K, Passer D, Plonowska K, Riley A, Tan TC, et al. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation. 2015;132:109–21.

    Article  PubMed  Google Scholar 

  7. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.

    Article  CAS  PubMed  Google Scholar 

  8. Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226–30.

    Article  CAS  PubMed  Google Scholar 

  9. Ryan TJ, Anderson JL, Antman EM, Braniff BA, Brooks NH, Califf RM, et al. Acc/aha guidelines for the management of patients with acute myocardial infarction: executive summary. A report of the American college of cardiology/american heart association task force on practice guidelines (committee on management of acute myocardial infarction). Circulation. 1996;94:2341–50.

    Article  CAS  PubMed  Google Scholar 

  10. Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc. 2008;40:34–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228–40.

    Article  CAS  PubMed  Google Scholar 

  13. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60. This study established the first chemically-defined protocol for the production of human cardiomyocytes from pluripotent stem cells, allowing for the utilization of patient-specific cardiomyocytes for downstream disease modeling and drug discovery assays without employing undefined components such as serum.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Niebruegge S, Nehring A, Bar H, Schroeder M, Zweigerdt R, Lehmann J. Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A. 2008;14:1591–601.

    Article  CAS  PubMed  Google Scholar 

  16. Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22:1991–2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long qt syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.

    Article  CAS  PubMed  Google Scholar 

  18. Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther. 2013;4:150.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sharma A, Marceau C, Hamaguchi R, Burridge PW, Rajarajan K, Churko JM, et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus b3-induced myocarditis and antiviral drug screening platform. Circ Res. 2014;115:556–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mordwinkin NM, Burridge PW, Wu JC. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res. 2013;6:22–30.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human esc-derived cardiomyocytes. Biomaterials. 2013;34:5813–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Stevens KR, Pabon L, Muskheli V, Murry CE. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A. 2009;15:1211–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sun L, Yu J, Qi S, Hao Y, Liu Y, Li Z. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction. J Cell Biochem. 2014;115:1868–76.

    CAS  PubMed  Google Scholar 

  25. Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin a2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279:35858–66.

    Article  CAS  PubMed  Google Scholar 

  26. Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, et al. Therapeutic delivery of cyclin a2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114:I206–13.

    Article  PubMed  Google Scholar 

  27. Bicknell KA, Coxon CH, Brooks G. Forced expression of the cyclin b1-cdc2 complex induces proliferation in adult rat cardiomyocytes. Biochem J. 2004;382:411–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tamamori-Adachi M, Ito H, Sumrejkanchanakij P, Adachi S, Hiroe M, Shimizu M, et al. Critical role of cyclin d1 nuclear import in cardiomyocyte proliferation. Circ Res. 2003;92:e12–9.

    Article  CAS  PubMed  Google Scholar 

  29. Evans-Anderson HJ, Alfieri CM, Yutzey KE. Regulation of cardiomyocyte proliferation and myocardial growth during development by foxo transcription factors. Circ Res. 2008;102:686–94.

    Article  CAS  PubMed  Google Scholar 

  30. Jung J, Kim TG, Lyons GE, Kim HR, Lee Y. Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem. 2005;280:30916–23.

    Article  CAS  PubMed  Google Scholar 

  31. O'Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, et al. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res. 2015;116:804–15.

    Article  PubMed  Google Scholar 

  32. Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. Fgf1-mediated cardiomyocyte cell cycle reentry depends on the interaction of fgfr-1 and fn14. FASEB J. 2014;28:2492–503.

    Article  CAS  PubMed  Google Scholar 

  33. Rochais F, Sturny R, Chao CM, Mesbah K, Bennett M, Mohun TJ, et al. Fgf10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res. 2014;104:432–42.

    Article  PubMed  Google Scholar 

  34. Shimoji K, Yuasa S, Onizuka T, Hattori F, Tanaka T, Hara M, et al. G-csf promotes the proliferation of developing cardiomyocytes in vivo and in derivation from escs and ipscs. Cell Stem Cell. 2010;6:227–37.

    Article  CAS  PubMed  Google Scholar 

  35. McDevitt TC, Laflamme MA, Murry CE. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the igf/pi 3-kinase/akt signaling pathway. J Mol Cell Cardiol. 2005;39:865–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Engels MC, Rajarajan K, Feistritzer R, Sharma A, Nielsen UB, Schalij MJ, et al. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells. 2014;32:1493–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/erbb4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138:257–70.

    Article  CAS  PubMed  Google Scholar 

  38. Hou CJ, Qi YM, Zhang DZ, Wang QG, Cui CS, Kuang L, et al. The proliferative and migratory effects of physical injury and stromal cell-derived factor-1 alpha on rat cardiomyocytes and fibroblasts. Eur Rev Med Pharmacol Sci. 2015;19:1252–7.

    PubMed  Google Scholar 

  39. Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, et al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. Circ Cardiovasc Genet. 2013;6:624–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. P38 map kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19:1175–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. Mir-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109:670–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, et al. Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112:1557–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yang Y, Cheng H, Qiu Y, Dupee DK, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R. Microrna-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res. 2015.

  44. Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, et al. In vivo activation of a conserved microrna program induces mammalian heart regeneration. Cell Stem Cell. 2014;15:589–604. In this study, the authors identified a set of microRNAs that are critical for regulating heart regeneration in zebrafish, and by inhibiting these miRNAs, were able to extend this regenerative mechanism to a murine model in order to induce cardiomyocyte dedifferentiation and proliferation post-infarction.

    Article  CAS  PubMed  Google Scholar 

  45. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. Microrna-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies mirnas inducing cardiac regeneration. Nature. 2012;492:376–81.

    Article  CAS  PubMed  Google Scholar 

  47. Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microrna-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7:279ra238.

    Article  Google Scholar 

  48. Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, et al. Mir-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via sox6 and cyclin d1. PLoS One. 2013;8, e74504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157:795–807.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13:962–9.

    Article  PubMed  Google Scholar 

  51. Reuter S, Soonpaa MH, Firulli AB, Chang AN, Field LJ. Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS One. 2014;9, e115871.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Becker JR, Chatterjee S, Robinson TY, Bennett JS, Panakova D, Galindo CL, et al. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Development. 2014;141:335–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Beigi F, Schmeckpeper J, Pow-Anpongkul P, Payne JA, Zhang L, Zhang Z, et al. C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the pi3k-akt-cdk7 pathway. Circ Res. 2013;113:372–80.

    Article  CAS  PubMed  Google Scholar 

  54. Tseng AS, Engel FB, Keating MT. The gsk-3 inhibitor bio promotes proliferation in mammalian cardiomyocytes. Chem Biol. 2006;13:957–63.

    Article  CAS  PubMed  Google Scholar 

  55. Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin d2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96:110–8.

    Article  CAS  PubMed  Google Scholar 

  56. Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ, Bhattacharya R, et al. Cyclin a2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. 2014;6:224ra227.

    Google Scholar 

  57. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a National Science Foundation Graduate Research Fellowship (to A. S.) and an NIH Director’s Pioneer Award, NIH/NHLBI U01 HL099067, American Heart Association Grant-in-Aid (to S.M.W.).

Compliance with Ethics Guidelines

Conflict of Interest

Arun Sharma reports grants from National Science Foundation and personal fees from Stanford University.

Yuan Zhang declares no potential conflicts of interest.

Sean M. Wu reports grants from National Institutes of Health and American Heart Association and personal fees from Stanford University and Silver Creek Pharmaceutical. Dr. Wu is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Wu MD PhD.

Additional information

This article is part of the Topical Collection on Regenerative Medicine and Stem-cell Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Zhang, Y. & Wu, S.M. Harnessing the Induction of Cardiomyocyte Proliferation for Cardiac Regenerative Medicine. Curr Treat Options Cardio Med 17, 45 (2015). https://doi.org/10.1007/s11936-015-0404-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0404-z

Keywords

Navigation