Skip to main content
Log in

Cardiac Arrest: the Changing Incidence of Ventricular Fibrillation

  • Arrhythmia (D Spragg, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

There are more than 300,000 out-of-hospital cardiac arrests (OHCA) in the USA annually, which can be grouped into those presenting with tachyarrhythmic (shockable) rhythms and those presenting with non-tachyarrhythmic rhythms. The incidence of tachyarrhythmic rhythms, which include ventricular fibrillation (VF) and pulseless ventricular tachycardia (VT), has been noted to be progressively decreasing in multiple studies of OHCA. Improved medical and surgical therapies for ischemic heart disease, and the widespread use of implantable cardiac defibrillators (ICDs), have likely contributed to a declining incidence of VF arrest and may result in conversion of an otherwise VF event into a pulseless electrical activity (PEA) arrest. As the incidence of VF has declined, it is unclear if the absolute incidence of non-tachyarrhythmic rhythms has increased or remained largely unchanged. This article discusses the changing rates of presenting rhythms in sudden cardiac arrest, the underlying cellular mechanisms of PEA, the factors contributing to the relative increase in the rate of PEA arrests, and current treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–245.

    Article  PubMed  Google Scholar 

  2. Engdahl J, Holmberg M, Karlson BW, Luepker R, Herlitz J. The epidemiology of out-of-hospital “sudden” cardiac arrest. Resuscitation. 2002;52:235–45.

    Article  CAS  PubMed  Google Scholar 

  3. Myerburg R. Sudden cardiac death: exploring the limits of our knowledge. J Cardiovasc Electrophysiol. 2001;12:369–81.

    Article  CAS  PubMed  Google Scholar 

  4. Heron M. Deaths: leading causes for 2010. Natl Vital Stat Rep. 2013;62:1–97.

    PubMed  Google Scholar 

  5. Myerburg RJ, Halperin H, Egan DA, Boineau R, Chugh SS, Gillis AM, et al. Pulseless electric activity: definition, causes, mechanisms, management, and research priorities for the next decade: report from a national heart, lung, and blood institute workshop. Circulation. 2013;128:2532–41. Report from an NIH working group that summarizes the current understanding of pulseless electrical activity and details potential directions for future research.

    Article  PubMed  Google Scholar 

  6. Chan PS, Krumholz HM, Nichol G, Nallamothu BK. Delayed time to defibrillation after in-hospital cardiac arrest. N Engl J Med. 2008;358:9–17.

    Article  CAS  PubMed  Google Scholar 

  7. Holmberg M, Holmberg S, Herlitz J. Incidence, duration and survival of ventricular fibrillation in out-of-hospital cardiac arrest patients in Sweden. Resuscitation. 2000;44:7–17.

    Article  CAS  PubMed  Google Scholar 

  8. Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006;295:50–7.

    Article  CAS  PubMed  Google Scholar 

  9. Meaney PA, Nadkarni VM, Kern KB, Indik JH, Halperin HR, Berg RA. Rhythms and outcomes of adult in-hospital cardiac arrest. Crit Care Med. 2010;38:101–8.

    Article  PubMed  Google Scholar 

  10. Bunch TJ, White RD, Friedman PA, Kottke TE, Wu LA, Packer DL. Trends in treated ventricular fibrillation out-of-hospital cardiac arrest: a 17-year population-based study. Heart Rhythm. 2004;1:255–9.

    Article  PubMed  Google Scholar 

  11. Kuisma M, Repo J, Alaspää A. The incidence of out-of-hospital ventricular fibrillation in Helsinki, Finland, from 1994 to 1999. Lancet. 2001;358:473–4.

    Article  CAS  PubMed  Google Scholar 

  12. Herlitz J, Andersson E, Bång A, Engdahl J, Holmberg M, Lindqvist J, et al. Experiences from treatment of out-of-hospital cardiac arrest during 17 years in Göteborg. Eur Heart J. 2000;21:1251–8. Study from Goteberg, Sweden that demonstrated decreasing incidence of out-of-hospital VF from 1981 to 1997 despite increased rate of bystander-provided CPR and shortened interval from time of collapse to defibrillation.

    Article  CAS  PubMed  Google Scholar 

  13. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK. Changing incidence of out-of-hospital ventricular fibrillation, 1980–2000. JAMA. 2015;288:3008–13. Population study from Seattle detailing a decline of 56 % in the incidence of out-of-hospital VF from 1980 to 2000.

    Article  Google Scholar 

  14. Polentini MS, Pirrallo RG, McGill W. The changing incidence of ventricular fibrillation in Milwaukee, Wisconsin (1992–2002). Prehosp Emerg Care. 2002;10:52–60.

    Article  Google Scholar 

  15. Redding JS, Pearson JW. Resuscitation from asphyxia. JAMA. 1962;182:283–6.

    Article  CAS  PubMed  Google Scholar 

  16. Wallmuller C, Meron G, Kurkciyan I, Schober A, Stratil P, Sterz F. Causes of in-hospital cardiac arrest and influence on outcome. Resuscitation. 2012;83:1206–11.

    Article  PubMed  Google Scholar 

  17. Bocka JJ, Overton DT, Hauser A. Electromechanical dissociation in human beings: an echocardiographic evaluation. Ann Emerg Med. 1988;17:450–2.

    Article  CAS  PubMed  Google Scholar 

  18. Salen P, Melniker L, Chooljian C, Rose JS, Alteveer J, Reed J, et al. Does the presence or absence of sonographically identified cardiac activity predict resuscitation outcomes of cardiac arrest patients? Am J Emerg Med. 2005;23:459–62.

    Article  PubMed  Google Scholar 

  19. Larabee TM, Paradis NA, Bartsch J, Cheng L, Little C. A swine model of pseudo-pulseless electrical activity induced by partial asphyxiation. Resuscitation. 2008;78:196–9.

    Article  PubMed  Google Scholar 

  20. Lee JA, Allen DG. Mechanisms of acute ischemic contractile failure of the heart—role of intracellular calcium. J Clin Invest. 1991;88:361–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Raizes G, Wagner GS, Hackel DB. Instantaneous nonarrhythmic cardiac death in acute myocardial infarction. Am J Cardiol. 1977;39:1–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kitakaze M, Marban E. Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol. 1989;414:455–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ponce-Hornos JE, Langer GA. Effects of inorganic phosphate on ion exchange, energy state, and contraction in mammalian heart. Am J Physiol. 1982;242:H79–88.

    CAS  PubMed  Google Scholar 

  24. Schmidt-Ott SC, Bletz C, Vahl C, Saggau W, Hagl S, Rüegg JC. Inorganic phosphate inhibits contractility and ATPase activity in skinned fibers from human myocardium. Basic Res Cardiol. 1990;85:358–66.

    Article  CAS  PubMed  Google Scholar 

  25. Ebus JP, Stienen GJ, Elzinga G. Influence of phosphate and pH on myofibrillar ATPase activity and force in skinned cardiac trabeculae from rat. J Physiol. 1994;476:501–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Davis AM, Natelson BH. Brain-heart interactions. The neurocardiology of arrhythmia and sudden cardiac death. Tex Heart Inst J. 1993;20:158–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Dhalla NS, Adameova A, Kaur M. Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol. 2010;24:539–46.

    Article  CAS  PubMed  Google Scholar 

  28. Xia Z-F, Zhao P, Horton JW. Changes in cardiac contractile function and myocardial [Ca2+]i after burn trauma: NMR study. Am J Physiol Heart Circ Physiol. 2001;280:H916–22.

    Google Scholar 

  29. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  CAS  PubMed  Google Scholar 

  30. Hoyert DL. 75 years of mortality in the United States, 1935–2010. NCHS Data Brief. 2012;1–8.

  31. Chartbook for the Conference on the Decline in Coronary Heart Disease Mortality; comparability of cause-of-death statistics, figures and tables, and technical notes describing trends in ischemic heart disease mortality. Hyattsville, MD; 1978.

  32. Fox CS, Evans JC, Larson MG, Kannel WB, Levy D. Temporal trends in coronary heart disease mortality and sudden cardiac death from 1950 to 1999: The Framingham Heart Study. Circulation. 2004;110:522–7.

    Article  PubMed  Google Scholar 

  33. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980–2000. N Engl J Med. 2007;356:2388–98.

    Article  CAS  PubMed  Google Scholar 

  34. Yongquist S, Kaji AH, Niemann JT. Beta-blocker use and the changing epidemiology of out-of-hospital cardiac arrest rhythms. Resuscitation. 2008;76:376–80.

    Article  Google Scholar 

  35. Smith NL, Chan JD, Rea TD, Wiggins KL, Gottdiener JS, Lumley T, et al. Time trends in the use of β-blockers and other pharmacotherapies in older adults with congestive heart failure. Am Heart J. 2004;148:710–7.

    Article  PubMed  Google Scholar 

  36. Shah SM, Carey IM, DeWilde S, Richards N, Cook DG. Trends and inequities in beta-blocker prescribing for heart failure. Br J Gen Pract. 2008;58:862–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Andersson C, Shilane D, Go AS, Chang TI, Kazi D, Solomon MD, et al. Beta-blocker therapy and cardiac events among patients with newly diagnosed coronary heart disease. J Am Coll Cardiol. 2014;64:247–52.

    Article  CAS  PubMed  Google Scholar 

  38. Chadda K, Goldstein S, Byington R, Curb JD. Effect of propranolol after acute myocardial infarction in patients with congestive heart failure. Circulation. 1986;73:503–10.

    Article  CAS  PubMed  Google Scholar 

  39. Mirowski M, Reid PR, Mower MM, Watkins L, Gott VL, Schauble JF, et al. Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N Engl J Med. 1980;303:322–4.

    Article  CAS  PubMed  Google Scholar 

  40. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter automatic defibrillator implantation trial investigators. N Engl J Med. 1996;335:1933–40.

    Article  CAS  PubMed  Google Scholar 

  41. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346:877–83.

    Article  PubMed  Google Scholar 

  42. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med. 1999;341:1882–90.

    Article  CAS  PubMed  Google Scholar 

  43. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352:225–37.

    Article  CAS  PubMed  Google Scholar 

  44. Desai AS, Fang JC, Maisel WH, Baughman KL. Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy: a meta-analysis of randomized controlled trials. JAMA. 2004;292:2874–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mond HG, Proclemer A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009—a World Society of Arrhythmia’s project. Pacing Clin Electrophysiol. 2011;34:1013–27.

    Article  PubMed  Google Scholar 

  46. Hulleman M, Berdowski J, De Groot JR, Van Dessel PFHM, Jan Willem Borleffs C, Blom MT, et al. Implantable cardioverter-defibrillators have reduced the incidence of resuscitation for out-of-hospital cardiac arrest caused by lethal arrhythmias. Circulation. 2012;126:815–21. Study from Holland that attributes 1/3 of the decrease in the incidence of out-of-hospital VF from 1985 to 1997 to the increased use of ICDs.

    Article  PubMed  Google Scholar 

  47. Mitchell LB, Pineda EA, Titus JL, Bartosch PM, Benditt DG. Sudden death in patients with implantable cardioverter defibrillators. The importance of post-shock electromechanical dissociation. J Am Coll Cardiol. 2002;39:1323–8.

    Article  PubMed  Google Scholar 

  48. Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC. Chronic obstructive pulmonary disease surveillance—United States, 1971–2000. Respir Care. 2002;47:1184–99.

    PubMed  Google Scholar 

  49. Akinbami LJ, Liu X. Chronic obstructive pulmonary disease among adults aged 18 and over in the United States, 1998–2009. NCHS Data Brief. 2011;1–8.

  50. Hall MJ, Levant S, DeFrances CJ. Trends in inpatient hospital deaths: National Hospital Discharge Survey, 2000–2010. NCHS Data Brief. 2013;1–8.

  51. Coba V, Jaehne AK, Suarez A, Dagher GA, Brown SC, Yang JJ, et al. The incidence and significance of bacteremia in out of hospital cardiac arrest. Resuscitation. 2014;85:196–202.

    Article  PubMed  Google Scholar 

  52. Neumar RW, Otto CW, Link MS, Kronick SL, Shuster M, Callaway CW, et al. Part 8: adult advanced cardiovascular life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S729–67.

    Article  PubMed  Google Scholar 

  53. Weisfeldt ML, Chandra N. Physiology of cardiopulmonary resuscitation. Annu Rev Med. 1981;32:435–42.

    Article  CAS  PubMed  Google Scholar 

  54. Chandra N, Guerci A, Weisfeldt ML, Tsitlik J, Lepor N. Contrasts between intrathoracic pressures during external chest compression and cardiac massage. Crit Care Med. 1981;9:789–92.

    Article  CAS  PubMed  Google Scholar 

  55. Maier GW, Tyson GS, Olsen CO, Kernstein KH, Davis JW, Conn EH, et al. The physiology of external cardiac massage: high-impulse cardiopulmonary resuscitation. Circulation. 1984;70:86–101.

    Article  CAS  PubMed  Google Scholar 

  56. Hausknecht MJ, Wise RA, Brower RG, Hassapoyannes C, Weisfeldt ML, Suzuki J, et al. Effects of lung inflation on blood flow during cardiopulmonary resuscitation in the canine isolated heart-lung preparation. Circ Res. 1986;59:676–83.

    Article  CAS  PubMed  Google Scholar 

  57. Cohen TJ, Tucker KJ, Lurie KG, Redberg RF, Dutton JP, Dwyer KA, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary resuscitation working group. JAMA. 1992;267:2916–23.

    Article  CAS  PubMed  Google Scholar 

  58. Lurie KG, Shultz JJ, Callaham ML, Schwab TM, Gisch T, Rector T, et al. Evaluation of active compression-decompression CPR in victims of out-of-hospital cardiac arrest. JAMA. 1994;271:1405–11.

    Article  CAS  PubMed  Google Scholar 

  59. Lurie K. Mechanical devices for cardiopulmonary resuscitation: an update. Emerg Med Clin North Am. 2002;20:771–84.

    Article  PubMed  Google Scholar 

  60. Langhelle A, Strømme T, Sunde K, Wik L, Nicolaysen G, Steen PA. Inspiratory impedance threshold valve during CPR. Resuscitation. 2002;52:39–48.

    Article  PubMed  Google Scholar 

  61. Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan K. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation. 1995;91:1629–32.

    Article  CAS  PubMed  Google Scholar 

  62. Cabrini L, Beccaria P, Landoni G, Biondi-Zoccai GGL, Sheiban I, Cristofolini M, et al. Impact of impedance threshold devices on cardiopulmonary resuscitation: a systematic review and meta-analysis of randomized controlled studies. Crit Care Med. 2008;36:1625–32.

    Article  PubMed  Google Scholar 

  63. Halperin HR, Paradis N, Ornato JP, Zviman M, Lacorte J, Lardo A, et al. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol. 2004;44:2214–20.

    Article  PubMed  Google Scholar 

  64. Casner M, Andersen D, Isaacs SM. The impact of a new CPR assist device on rate of return of spontaneous circulation in out-of-hospital cardiac arrest. Prehosp Emerg Care. 2005;9:61–7.

    Article  PubMed  Google Scholar 

  65. Hallstrom A, Rea TD, Sayre MR, Christenson J, Anton AR, Mosesso VN, et al. Manual chest compression vs use of an automated chest compression device during resuscitation following out-of-hospital cardiac arrest: a randomized trial. JAMA. 2006;295:2620–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ewy GA. The cardiocerebral resuscitation protocol for treatment of out-of-hospital primary cardiac arrest. Scand J Trauma Resusc Emerg Med. 2012;20:65.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Ewy GA, Bobrow BJ. Cardiocerebral resuscitation: an approach to improving survival of patients with primary cardiac arrest. J Intensive Care Med. 2014.

  68. Cunningham LM, Mattu A, O’Connor RE, Brady WJ. Cardiopulmonary resuscitation for cardiac arrest: the importance of uninterrupted chest compressions in cardiac arrest resuscitation. Am J Emerg Med. 2012;30:1630–8.

    Article  PubMed  Google Scholar 

  69. Hallstrom A, Cobb L, Johnson E, Copass M. Cardiopulmonary resuscitation by chest compression alone or with mouth-to-mouth ventilation. N Engl J Med. 2000;342:1546–53.

    Article  CAS  PubMed  Google Scholar 

  70. Halperin HR, Brower R, Weisfeldt ML, Tsitlik JE, Chandra N, Cristiano LM, et al. Air trapping in the lungs during cardiopulmonary resuscitation in dogs. A mechanism for generating changes in intrathoracic pressure. Circ Res. 1989;65:946–54.

    Article  CAS  PubMed  Google Scholar 

  71. Pargett M, Geddes LA, Otlewski MP, Rundell AE. Rhythmic abdominal compression CPR ventilates without supplemental breaths and provides effective blood circulation. Resuscitation. 2008;79:460–7.

    Article  PubMed  Google Scholar 

  72. Deakin CD, O’Neill JF, Tabor T. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation. 2007;75:53–9.

    Article  PubMed  Google Scholar 

  73. Botran M, Lopez-Herce J, Urbano J, Solana MJ, Garcia A, Carrillo A. Chest compressions versus ventilation plus chest compressions: a randomized trial in a pediatric asphyxial cardiac arrest animal model. Intensive Care Med. 2011;37:1873–80.

    Article  PubMed  Google Scholar 

  74. Hasegawa K, Hiraide A, Chang Y, Brown DFM. Association of prehospital advanced airway management with neurologic outcome and survival in patients with out-of-hospital cardiac arrest. JAMA. 2013;309:257–66.

    Article  CAS  PubMed  Google Scholar 

  75. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557–63.

    Article  PubMed  Google Scholar 

  76. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549–56.

  77. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med. 2013;369:2197–206.

    Article  CAS  PubMed  Google Scholar 

  78. Yannopoulos D, Zviman M, Castro V, Kolandaivelu A, Ranjan R, Wilson RF, et al. Intra-cardiopulmonary resuscitation hypothermia with and without volume loading in an ischemic model of cardiac arrest. Circulation. 2009;120:1426–35.

    Article  PubMed  Google Scholar 

  79. Chen Y-S, Lin J-W, Yu H-Y, Ko W-J, Jerng J-S, Chang W-T, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–61.

    Article  PubMed  Google Scholar 

  80. Cave DM, Gazmuri RJ, Otto CW, Nadkarni VM, Cheng A, Brooks SC, et al. Part 7: CPR techniques and devices: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2010;122:S720–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Steven P. Keller and Henry R. Halperin each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven P. Keller MD, PhD.

Additional information

This article is part of the Topical Collection on Arrhythmia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, S.P., Halperin, H.R. Cardiac Arrest: the Changing Incidence of Ventricular Fibrillation. Curr Treat Options Cardio Med 17, 29 (2015). https://doi.org/10.1007/s11936-015-0392-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0392-z

Keywords

Navigation