Skip to main content
Log in

The Role of Cardiovascular Magnetic Resonance (CMR) and Computed Tomography (CCT) in Facilitating Heart Failure Management

  • Heart Failure (J Fang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Cardiovascular magnetic resonance (CMR) and cardiac computed tomography (CCT) offer advantages for detecting left or right ventricular dysfunction in patients with or suspected of heart failure. CMR does not expose patients to ionizing radiation, and thus is well-suited for functional assessments and serial studies. CCT provides high spatial resolution, making it useful for the identification of coronary arteriosclerosis associated with ischemic cardiomyopathy. In this review, the clinical applications of CMR and CCT are individually discussed, with comparisons made between them to examine the strengths of each modality. The major techniques for each modality are outlined, as well as their uses for the evaluation of cardiomyopathy in heart failure patients with reduced left ventricular ejection fraction, preserved left ventricular ejection fraction, and valvular heart disease. Finally, we review the utility of CMR and CCT in determining which patients will benefit from cardiac resynchronization therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References and Recommended Reading

  1. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288(17):2144–50.

    Article  PubMed  Google Scholar 

  2. Hundley WG, Kitzman DW, Morgan TM, Hamilton CA, Darty SN, Stewart KP, et al. Cardiac cycle-dependent changes in aortic area and distensibility are reduced in older patients with isolated diastolic heart failure and correlate with exercise intolerance. J Am Coll Cardiol. 2001;38(3):796–802.

    Article  PubMed  CAS  Google Scholar 

  3. Dall'Armellina E, Morgan TM, Mandapaka S, Ntim W, Carr JJ, Hamilton CA, et al. Prediction of cardiac events in patients with reduced left ventricular ejection fraction with dobutamine cardiovascular magnetic resonance assessment of wall motion score index. J Am Coll Cardiol. 2008;52(4):279–86.

    Article  PubMed  Google Scholar 

  4. Lee VS. Black blood imaging. In: Lee VS, editor. Cardiovascular MRI. New York: Lippincott Williams and Wilkins; 2006. p. 274–82.

  5. Lightfoot JC, D'Agostino Jr RB, Hamilton CA, Jordan J, Torti FM, Kock ND, et al. Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging in an experimental model. Circ Cardiovasc Imaging. 2010;3(5):550–8.

    Article  PubMed  Google Scholar 

  6. Lee VS. Cine gradient echo imaging. In: Lee VS, editor. Cardiovascular MRI. New York: Lippincott Williams and Wilkins; 2006. p. 283–306.

  7. Hundley WG, Bluemke DA, Finn JP, Flamm SD, Fogel MA, Friedrich MG, et al. ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2614–62.

    Article  PubMed  Google Scholar 

  8. Kuhl HP, Spuentrup E, Wall A, Franke A, Schroder J, Heussen N, et al. Assessment of myocardial function with interactive non-breath-hold real-time MR imaging: comparison with echocardiography and breath-hold Cine MR imaging. Radiology. 2004;231(1):198–207.

    Article  PubMed  Google Scholar 

  9. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ. Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2000;2(4):271–8.

    Article  PubMed  CAS  Google Scholar 

  10. Kempny A, Fernandez-Jimenez R, Orwat S, Schuler P, Bunck AC, Maintz D, et al. Quantification of biventricular myocardial function using cardiac magnetic resonance feature tracking, endocardial border delineation and echocardiographic speckle tracking in patients with repaired tetralogy of Fallot and healthy controls. J Cardiovasc Magn Reson. 2012;14:32.

    Article  PubMed  Google Scholar 

  11. Li P, Meng H, Liu SZ, Vannan MA. Quantification of left ventricular mechanics using vector-velocity imaging, a novel feature tracking algorithm, applied to echocardiography and cardiac magnetic resonance imaging. Chin Med J (Engl). 2012;125(15):2719–27.

    Google Scholar 

  12. Osman NF, Kerwin WS, McVeigh ER, Prince JL. Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med. 1999;42(6):1048–60.

    Article  PubMed  CAS  Google Scholar 

  13. Pan L, Prince JL, Lima JA, Osman NF. Fast tracking of cardiac motion using 3D-HARP. IEEE Trans Biomed Eng. 2005;52(8):1425–35.

    Article  PubMed  Google Scholar 

  14. Diller GP, Radojevic J, Kempny A, Alonso-Gonzalez R, Emmanouil L, Orwat S, et al. Systemic right ventricular longitudinal strain is reduced in adults with transposition of the great arteries, relates to subpulmonary ventricular function, and predicts adverse clinical outcome. Am Heart J. 2012;163(5):859–66.

    Article  PubMed  Google Scholar 

  15. Hor KN, Mazur W, Taylor MD, Al-Khalidi HR, Cripe LH, Jefferies JL, et al. Effects of steroids and angiotensin converting enzyme inhibition on circumferential strain in boys with Duchenne muscular dystrophy: a cross-sectional and longitudinal study utilizing cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:60.

    Article  PubMed  Google Scholar 

  16. Schuster A, Morton G, Hussain ST, Jogiya R, Kutty S, Asrress KN, et al. The intra-observer reproducibility of cardiovascular magnetic resonance myocardial feature tracking strain assessment is independent of field strength. Eur J Radiol. 2013;82(2):296–301.

    Article  PubMed  Google Scholar 

  17. Korosoglou G, Futterer S, Humpert PM, Riedle N, Lossnitzer D, Hoerig B, et al. Strain-encoded cardiac MR during high-dose dobutamine stress testing: comparison to cine imaging and to myocardial tagging. J Magn Reson Imaging. 2009;29(5):1053–61.

    Article  PubMed  Google Scholar 

  18. Tandri H, Daya SK, Nasir K, Bomma C, Lima JA, Calkins H, et al. Normal reference values for the adult right ventricle by magnetic resonance imaging. Am J Cardiol. 2006;98(12):1660–4.

    Article  PubMed  Google Scholar 

  19. Lee VS. Phase contrast flow quantification in the heart. In: Lee VS, editor. Cardiovascular MRI. New York: Lippincott Williams and Wilkins; 2006. p. 325–36.

  20. Hundley WG, Li HF, Hillis LD, Meshack BM, Lange RA, Willard JE, et al. Quantitation of cardiac output with velocity-encoded, phase-difference magnetic resonance imaging. Am J Cardiol. 1995;75(17):1250–5.

    Article  PubMed  CAS  Google Scholar 

  21. Hundley WG, Li HF, Willard JE, Landau C, Lange RA, Meshack BM, et al. Magnetic resonance imaging assessment of the severity of mitral regurgitation. Comparison with invasive techniques. Circulation. 1995;92(5):1151–8.

    Article  PubMed  CAS  Google Scholar 

  22. Bernhardt P, Engels T, Levenson B, Haase K, Albrecht A, Strohm O. Prediction of necessity for coronary artery revascularization by adenosine contrast-enhanced magnetic resonance imaging. Int J Cardiol. 2006;112(2):184–90.

    Article  PubMed  Google Scholar 

  23. Lee VS. Tissue characterization in the heart. In: Lee VS, editor. Cardiovascular MRI. New York: Lippincott Williams and Wilkins; 2006. p. 307–24.

  24. Menke J, Unterberg-Buchwald C, Staab W, Sohns JM, Seif Amir Hosseini A, Schwarz A. Head-to-head comparison of prospectively triggered vs retrospectively gated coronary computed tomography angiography: Meta-analysis of diagnostic accuracy, image quality, and radiation dose. Am Heart J. 2013;165(2):154–63.

    Article  PubMed  Google Scholar 

  25. Vorre MM, Abdulla J. Diagnostic accuracy and radiation dose of CT coronary angiography in atrial fibrillation: systematic review and meta-analysis. Radiology. 2013;267(2):376–86.

    Article  PubMed  Google Scholar 

  26. Kim JS, Choo KS, Jeong DW, Chun KJ, Park YH, Song SG, et al. Step-and-shoot prospectively ECG-gated vs retrospectively ECG-gated with tube current modulation coronary CT angiography using 128-slice MDCT patients with chest pain: diagnostic performance and radiation dose. Acta Radiol. 2011;52(8):860–5.

    Article  PubMed  Google Scholar 

  27. Martini C, Palumbo A, Maffei E, Rossi A, Rengo M, Malago R, et al. Dose reduction in spiral CT coronary angiography with dual-source equipment. Part I. A phantom study applying different prospective tube current modulation algorithms. Radiol Med. 2009;114(7):1037–52.

    Article  PubMed  CAS  Google Scholar 

  28. Yang CC, Mok GS, Law WY, Hsu SM, Wu TH, Chen LK. Potential dose reduction of optimal ECG-controlled tube current modulation for 256-slice CT coronary angiography. Acad Radiol. 2011;18(6):731–7.

    Article  PubMed  Google Scholar 

  29. Feuchtner G, Goetti R, Plass A, Wieser M, Scheffel H, Wyss C, et al. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging. 2011;4(5):540–9.

    Article  PubMed  Google Scholar 

  30. Mendoza DD, Joshi SB, Weissman G, Taylor AJ, Weigold WG. Viability imaging by cardiac computed tomography. J Cardiovasc Comput Tomogr. 2010;4(2):83–91.

    Article  PubMed  Google Scholar 

  31. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J. 2006;151(3):736–44.

    Article  PubMed  Google Scholar 

  32. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation. 2006;114(7):654–61.

    Article  PubMed  Google Scholar 

  33. Wallace EL, Morgan TM, Walsh TF, Dall'Armellina E, Ntim W, Hamilton CA, et al. Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected ischemic heart disease. JACC Cardiovasc Imaging. 2009;2(3):299–307.

    Article  PubMed  Google Scholar 

  34. Korosoglou G, Elhmidi Y, Steen H, Schellberg D, Riedle N, Ahrens J, et al. Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1493 consecutive patients: assessment of myocardial wall motion and perfusion. J Am Coll Cardiol. 2010;56(15):1225–34.

    Article  PubMed  CAS  Google Scholar 

  35. Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM. Magnetic resonance imaging determination of cardiac prognosis. Circulation. 2002;106(18):2328–33.

    Article  PubMed  Google Scholar 

  36. Walsh TF, Dall'Armellina E, Chughtai H, Morgan TM, Ntim W, Link KM, et al. Adverse effect of increased left ventricular wall thickness on five year outcomes of patients with negative dobutamine stress. J Cardiovasc Magn Reson. 2009;11:25.

    Article  PubMed  Google Scholar 

  37. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  PubMed  CAS  Google Scholar 

  38. Steel K, Broderick R, Gandla V, Larose E, Resnic F, Jerosch-Herold M, et al. Complementary prognostic values of stress myocardial perfusion and late gadolinium enhancement imaging by cardiac magnetic resonance in patients with known or suspected coronary artery disease. Circulation. 2009;120(14):1390–400.

    Article  PubMed  Google Scholar 

  39. Mahrholdt H, Wagner A, Deluigi CC, Kispert E, Hager S, Meinhardt G, et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006;114(15):1581–90.

    Article  PubMed  Google Scholar 

  40. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J. 2005;26(15):1461–74.

    Article  PubMed  Google Scholar 

  41. Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S, et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging. 2012;5(1):102–10.

    Article  PubMed  Google Scholar 

  42. Cheong BY, Muthupillai R, Nemeth M, Lambert B, Dees D, Huber S, et al. The utility of delayed-enhancement magnetic resonance imaging for identifying nonischemic myocardial fibrosis in asymptomatic patients with biopsy-proven systemic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2009;26(1):39–46.

    PubMed  CAS  Google Scholar 

  43. Patel MR, Cawley PJ, Heitner JF, Klem I, Parker MA, Jaroudi WA, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation. 2009;120(20):1969–77.

    Article  PubMed  Google Scholar 

  44. White JA, Patel MR. The role of cardiovascular MRI in heart failure and the cardiomyopathies. Cardiol Clin. 2007;25(1):71–95 vi.

    Google Scholar 

  45. Lu MY, Peng SS, Chang HH, Yang YL, Chen CA, Jou ST, et al. Cardiac iron measurement and iron chelation therapy in patients with beta thalassaemia major: experience from Taiwan. Transfus Med. 2013;23(2):100–7.

    Article  PubMed  Google Scholar 

  46. Piga A, Longo F, Musallam KM, Cappellini MD, Forni GL, Quarta G, et al. Assessment and management of iron overload in beta-thalassaemia major patients during the 21st century: a real-life experience from the Italian Webthal project. Br J Haematol. 2013;161(6):872–83.

    Google Scholar 

  47. Shamsian BS, Esfahani SA, Milani H, Akhlaghpoor S, Mojtahedzadeh S, Karimi A, et al. Magnetic resonance imaging in the evaluation of iron overload: a comparison of MRI, echocardiography and serum ferritin level in patients with beta-thalassemia major. Clin Imaging. 2012;36(5):483–8.

    Article  PubMed  Google Scholar 

  48. Petersen SE, Selvanayagam JB, Wiesmann F, Robson MD, Francis JM, Anderson RH, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):101–5.

    Article  PubMed  Google Scholar 

  49. Alhabshan F, Smallhorn JF, Golding F, Musewe N, Freedom RM, Yoo SJ. Extent of myocardial non-compaction: comparison between MRI and echocardiographic evaluation. Pediatr Radiol. 2005;35(11):1147–51.

    Article  PubMed  Google Scholar 

  50. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36(2):493–500.

    Article  PubMed  CAS  Google Scholar 

  51. Stacey RB, Andersen MM, St. Clair SM, Hundley WG, Thohan V. Comparison of systolic and diastolic criteria for isolated left ventricular noncompaction in cardiac MRI. JACC Cardiovasc Imaging. 2013. doi:10.1016/j.jcmg.2013.01.014.

  52. van Dockum WG, Knaapen P, Hofman MB, Kuijer JP, ten Cate FJ, ten Berg JM, et al. Impact of alcohol septal ablation on left anterior descending coronary artery blood flow in hypertrophic obstructive cardiomyopathy. Int J Cardiovasc Imaging. 2009;25(5):511–8.

    Article  PubMed  Google Scholar 

  53. Maron BJ, Lindberg J, Lesser JR. Ventricular septal crypt in hypertrophic cardiomyopathy. Eur Heart J. 2010;31(15):1923.

    Article  PubMed  Google Scholar 

  54. Maron MS, Olivotto I, Harrigan C, Appelbaum E, Gibson CM, Lesser JR, et al. Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation. 2011;124(1):40–7.

    Article  PubMed  CAS  Google Scholar 

  55. Defrance C, Bollache E, Kachenoura N, Perdrix L, Hrynchyshyn N, Bruguiere E, et al. Evaluation of aortic valve stenosis using cardiovascular magnetic resonance: comparison of an original semiautomated analysis of phase-contrast cardiovascular magnetic resonance with Doppler echocardiography. Circ Cardiovasc Imaging. 2012;5(5):604–12.

    Article  PubMed  Google Scholar 

  56. Tanaka K, Makaryus AN, Wolff SD. Correlation of aortic valve area obtained by the velocity-encoded phase contrast continuity method to direct planimetry using cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(5):799–805.

    Article  PubMed  Google Scholar 

  57. Yap SC, van Geuns RJ, Meijboom FJ, Kirschbaum SW, McGhie JS, Simoons ML, et al. A simplified continuity equation approach to the quantification of stenotic bicuspid aortic valves using velocity-encoded cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9(6):899–906.

    Article  PubMed  Google Scholar 

  58. Cawley PJ, Hamilton-Craig C, Owens DS, Krieger EV, Strugnell WE, Mitsumori L, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6(1):48–57.

    Article  PubMed  Google Scholar 

  59. Feuchtner GM, Muller S, Bonatti J, Schachner T, Velik-Salchner C, Pachinger O, et al. Sixty-four slice CT evaluation of aortic stenosis using planimetry of the aortic valve area. Am J Roentgenol. 2007;189(1):197–203.

    Article  Google Scholar 

  60. Jilaihawi H, Doctor N, Kashif M, Chakravarty T, Rafique A, Makar M, et al. Aortic annular sizing for transcatheter aortic valve replacement using cross-sectional 3-dimensional transesophageal echocardiography. J Am Coll Cardiol. 2013;61(9):908–16.

    Article  PubMed  Google Scholar 

  61. Feuchtner GM, Dichtl W, Muller S, Jodocy D, Schachner T, Klauser A, et al. 64-MDCT for diagnosis of aortic regurgitation in patients referred to CT coronary angiography. Am J Roentgenol. 2008;191(1):W1–7.

    Article  Google Scholar 

  62. Duckett SG, Chiribiri A, Ginks MR, Sinclair S, Knowles BR, Botnar R, et al. Cardiac MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. J Magn Reson Imaging. 2011;33(1):87–95.

    Article  PubMed  Google Scholar 

  63. Leyva F, Foley PW, Chalil S, Ratib K, Smith RE, Prinzen F, et al. Cardiac resynchronization therapy guided by late gadolinium-enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:29.

    Article  PubMed  Google Scholar 

  64. Leyva F, Taylor RJ, Foley PW, Umar F, Mulligan LJ, Patel K, et al. Left ventricular midwall fibrosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J Am Coll Cardiol. 2012;60(17):1659–67.

    Article  PubMed  Google Scholar 

  65. Malago R, Pezzato A, Barbiani C, Sala G, Zamboni GA, Tavella D, et al. Noninvasive cardiac vein mapping: role of multislice CT coronary angiography. Eur J Radiol. 2012;81(11):3262–9.

    Article  PubMed  Google Scholar 

  66. Neizel M, Kramer N, Schutte A, Schnackenburg B, Kruger S, Kelm M, et al. Magnetic resonance imaging of the cardiac venous system and magnetic resonance-guided intubation of the coronary sinus in swine: a feasibility study. Invest Radiol. 2010;45(8):502–6.

    Article  PubMed  Google Scholar 

  67. Saremi F, Muresian H, Sanchez-Quintana D. Coronary veins: comprehensive CT-anatomic classification and review of variants and clinical implications. Radiographics. 2012;32(1):E1–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported in part by National Institute of Health grants R33 CA121296-02, R01 HL076438-02, R01 CA167821-01, P30 AG21332, and P30 CA012197.

Compliance with Ethics Guidelines

Conflict of Interest

W. George Hundley reported receiving grants from NIH and Bracco (grants R33 CA121296-02, R01 HL076438-02, R01 CA167821-01, P30 AG21332 and P30 CA012197).

Richard Stacey declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Gregory Hundley MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacey, R.B., Hundley, W.G. The Role of Cardiovascular Magnetic Resonance (CMR) and Computed Tomography (CCT) in Facilitating Heart Failure Management. Curr Treat Options Cardio Med 15, 373–386 (2013). https://doi.org/10.1007/s11936-013-0253-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-013-0253-6

Keywords

Navigation