Skip to main content
Log in

Pharmaceutical management of decompensated heart failure syndrome in children: Current state of the art and a new approach

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Prompt initiation of appropriate and intensive treatment in children with decompensated heart failure is crucial to avoid irreversible end-organ dysfunction. Initial management of these children includes transfer to the pediatric cardiac intensive care unit, basic hemodynamic monitoring, and establishment of intravenous access. Inotropic support should be instituted peripherally before obtaining central venous and arterial access. The team should be prepared for emergent intubation and initiation of mechanical circulatory support. Two experienced physicians should work together to obtain vascular access and manage sedation, airway control, and cardiovascular support. Acute heart failure syndrome in children may be related to cardiomyopathy, myocarditis, congenital heart disease, and acute rejection post heart transplantation. Each of these causes requires a different approach. Fulminant myocarditis may lead to severe morbidity and requires intensive support, although its outcome is considered to be good. Acute heart failure related to newly diagnosed dilated cardiomyopathy may represent end-stage heart failure; therefore, long-term mechanical circulatory support and heart transplantation may be considered to avoid other end-organ dysfunction. Hypertrophic cardiomyopathy may lead to acute decompensation due to 1) left ventricular outflow obstruction, 2) restrictive physiology leading to pulmonary hypertension, or 3) myocardial is chemia associated with coronary artery bridging. Decompensated heart failure associated with congenital heart disease usually represents end-stage heart failure and requires thorough evaluation for heart transplantation. Children with single-ventricle physiology who develop decompensated heart failure after a Fontan procedure are not candidates for mechanical circulatory support and therefore may not survive to heart transplantation. Acute heart failure due to posttransplantation acute rejection requires aggressive antirejection treatment, which places these patients at significant risk for overwhelming opportunistic infections. In our opinion, mechanical circulatory support should be initiated early in children who present with end-stage heart failure associated with hemodynamic instability to avoid end-organ damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Boucek MM, Edwards LB, Keck BM, et al.: Registry for the International Society for Heart and Lung Transplantation: seventh official pediatric report: 2004. J Heart Lung Transplant 2004, 23:933–947.

    Article  PubMed  Google Scholar 

  2. McCarthy RE, Bohemer JP, Hruban RH, et al.: Long term outcomes of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 2000, 342:690–695.

    Article  PubMed  Google Scholar 

  3. Duncan BW, Bohn EJ, Atz AM, et al.: Mechanical circulatory support for the treatment of children with acute fulminant myocarditis. J Thorac Cardiovasc Surg 2001, 122:440–448.

    Article  PubMed  CAS  Google Scholar 

  4. Duncan BW: Mechanical circulatory support for infant and children with cardiac disease. Ann Thorac Surg 2002, 73:1670–1677.

    Article  PubMed  Google Scholar 

  5. Addonizio IJ, Zangwill SD, Rosenthal DN, et al.: Have changes in UNOS status system improved allocation in pediatric heart recipients [abstract]? J Heart Lung Transplant 2005, 24:S64–S65.

    Article  Google Scholar 

  6. Rich S: The current treatment of pulmonary hypertension: time to redefine success. Chest 2006, 130:1198–1202.

    Article  PubMed  Google Scholar 

  7. Hardman JG, Limbird LE, Gilman AG: Goodman & Gilman’s the Pharmacological Basis of Therapeutics. Columbus, OH: McGraw-Hill; 2001:1825.

    Google Scholar 

  8. Westfall TC, Westfall DP: Adrenergic agonists and antagonists. In Goodman & Gilman’s the Pharmacologic Basis of Therapeutics. Edited by Brunton LL, Lazo JS, Parker KL. New York: McGraw Hill; 2005:237–295.

    Google Scholar 

  9. Hashimoto H, Kunitada S, Tamura K: Functional and metabolic effects of bucladesine (dibutyryl cyclic AMP) in the working rat heart preparation: comparison with dopamine. Arch Int Pharmacodyn Ther 1989, 301:200–214.

    PubMed  CAS  Google Scholar 

  10. Marino BS, Wernovski G: Preoperative care. In Pediatric Cardiac Intensive Care. Edited by Chang AC, Hanley F, Wernovsky G, Wessel DL. Baltimore: Lippincott Williams & Wilkins; 1998:151–162.

    Google Scholar 

  11. Siwy BK, Sadove AM: Acute management of dopamine infiltration injury with regitine. Plast Reconstr Surg 1987, 80:610.

    Article  PubMed  CAS  Google Scholar 

  12. Perkin RM, Levin DL, Webb R, et al.: Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982, 100:977–983.

    Article  PubMed  CAS  Google Scholar 

  13. Berg RA, Donnerstein RL, Padbury JF: Dobutamine in stable, critically ill children: pharmacokinetics and hemodynamic actions. Crit Care Med 1993, 21:678–686.

    Article  PubMed  CAS  Google Scholar 

  14. Habib DM, Padbury JF, Anas NG, et al.: Dobutamine pharmacokinetics and pharmacodynamics in pediatric intensive care patients. Crit Care Med 1992, 20:601–608.

    Article  PubMed  CAS  Google Scholar 

  15. Driscoll DJ, Gillette PC, Duff DF, et al.: Hemodynamic effects of dobutamine in children. Am J Cardiol 1979, 45:581–585.

    Article  Google Scholar 

  16. Perkin RM, Levin DL, Webb R, et al.: Dobutamine: a hemodynamic evaluation in children with shock. J Pediatr 1982, 100:977–983.

    Article  PubMed  CAS  Google Scholar 

  17. O’Connor CM, Gattis WA, Uretsky BF, et al.: Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 1999, 138:78–86.

    Article  PubMed  Google Scholar 

  18. Van Bakel AB, Chidsey G: Management of advanced heart failure. Clin Cornerstone 2000, 3:25–35.

    Article  PubMed  Google Scholar 

  19. Notterman DA: Inotropic agents, catecholamines, digoxin, amrinone. Crit Care Clin 1991, 7:583–613.

    PubMed  CAS  Google Scholar 

  20. Johnson RR, Eger EI 2nd, William C: A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 1976, 55:709–712.

    Google Scholar 

  21. Levy B: Bench-to-bedside review: is there a place for epinephrine in septic shock? Crit Care 2005, 9:561–565.

    Article  PubMed  Google Scholar 

  22. Earl CQ, Linden J: Biochemical mechanisms for the inotropic effect of the cardiotonic drug milrinone. J Cardiovasc Pharmacol 1986, 8:864–872.

    PubMed  CAS  Google Scholar 

  23. Edelson J, Stroshane R, Benziger DP, et al.: Pharmacokinetics of the bipyridines amrinone and milrinone. Circulation 1986, 73:III145–III152.

    PubMed  CAS  Google Scholar 

  24. Cuffe MS, Califf RM, Adams KF Jr, et al.: Short term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. JAMA 2002, 287:1541–1547.

    Article  PubMed  CAS  Google Scholar 

  25. Felker GM, Benza RL, Chandler AB, et al.: Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 2003, 41:997–1003.

    Article  PubMed  CAS  Google Scholar 

  26. Hershberger RE, Nauman D, Walker TL, et al.: Care processes and clinical outcomes of continuous outpatient support with inotropes (COSI) in patients with refractory endstage heart failure. J Cardiac Fail 2003, 9:180–187.

    Article  Google Scholar 

  27. Price JF, Towbin JA, Dreyer WJ, et al.: Outpatient continuous parenteral inotropic therapy as bridge to transplantation in children with advanced heart failure. J Card Fail 2006, 12:139–143.

    Article  PubMed  Google Scholar 

  28. Berg AM, Snell L, Mahle WT: Home inotropic therapy in children. J Heart Lung Transplant 2007, 26:453–457.

    Article  PubMed  Google Scholar 

  29. Smith RP, Kruszyna H: Nitroprusside produces cyanide poisoning via a reaction with hemoglobin. J Pharmacol Exp Ther 1974, 191:557–563.

    PubMed  CAS  Google Scholar 

  30. Guiha NH, Cohn JN, Mikulic E, et al.: Treatment of refractory heart failure with infusion of nitroprusside. N Engl J Med 1974, 291:587–592.

    PubMed  CAS  Google Scholar 

  31. Khot UN, Novaro GM, Popovic ZB, et al.: Nitroprusside in critically ill patients with left ventricular dysfunction and aortic stenosis. N Engl J Med 2003, 348:1756–1763.

    Article  PubMed  CAS  Google Scholar 

  32. Johnson W, Omland T, Hall C, et al.: Neurohormonal activation rapidly decreases after intravenous therapy with diuretics and vasodilators for class IV heart failure. J Am Coll Cardiol 2002, 39:1623–1629.

    Article  PubMed  CAS  Google Scholar 

  33. Wang DJ, Dowling TC, Meadows D, et al.: Nesiritide does not improve renal function in patients with chronic heart failure and worsening serum creatinine. Circulation 2004, 110:1620–1625.

    Article  PubMed  CAS  Google Scholar 

  34. Mahle WT, Cuadrado AR, Kirshbom PM, et al.: Nesiritide in infants and children with congestive heart failure. Pediatr Crit Care Med 2005, 6:543–546.

    Article  PubMed  Google Scholar 

  35. Jefferies JL, Denfield SW, Price JF, et al.: A prospective evaluation of nesiritide in the treatment of pediatric heart failure. Pediatr Cardiol 2006, 27:402–407.

    Article  PubMed  CAS  Google Scholar 

  36. Ryan A, Rosen DA, Tobias JD: Preliminary experience with nesiritide in pediatric patients less than 12 months of age. J Intensive Care Med 2008, 23:321–328.

    Article  PubMed  Google Scholar 

  37. Silver MA, Horton DP, Ghali JK, Elkayam U: Effect of nesiritide versus dobutamine on short term outcomes in the treatment of patients with acutely decompensated heart failure. J Am Coll Cardiol 2002, 39:798–803.

    Article  PubMed  CAS  Google Scholar 

  38. Sackner-Bernstein JD, Skopicki HA, Aaronson KD: Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 2005, 111:1487–1491.

    Article  PubMed  CAS  Google Scholar 

  39. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K: Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 2005, 293:1900–1905.

    Article  PubMed  CAS  Google Scholar 

  40. Packer M: The search for the ideal positive inotropic agent. N Engl J Med 1993, 329:201–202.

    Article  PubMed  CAS  Google Scholar 

  41. Felker GM, Benza RL, Chandler AB, et al.: OPTIMECHF Investigators: Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J Am Coll Cardiol 2003, 41:997–1003.

    Article  PubMed  CAS  Google Scholar 

  42. Thackray S, Easthaugh J, Freemantle N, Cleland JG: The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure-a meta-regression analysis. Eur J Heart Fail 2002, 4:515–529.

    Article  PubMed  CAS  Google Scholar 

  43. Packer M, Colucci WS, Fisher L, et al.: Development of a comprehensive new endpoint for the evaluation of new treatments for acute decompensated heart failure: results with levosimendan in the REVIVE-1 study [abstract]. J Card Fail 2003, 9:S61.

    Article  Google Scholar 

  44. Mebazaa A, Cohen-Solal A, Kleber F, et al.: Study design of a mortality trial with intravenous levosimendan (the SURVIVE study) in patients with acutely decompensated heart failure [abstract 231]. Presented at the Eighth Annual Scientific Meeting of the Heart Failure Society of America. Toronto, Canada; September 12–15, 2004.

  45. Gheorghiade M, Teerlink JR, Mebazaa A: Pharmacology of new agents for acute heart failure syndromes. Am J Cardiol 2005, 96:68G–73G.

    Article  PubMed  CAS  Google Scholar 

  46. Moiseyev VS, Poder P, Andrejevs N, et al.: Safety and efficacy of a novel calcium sensitizer, levosimendan, in patients with left ventricular failure due to an acute myocardial infarction: a randomized, placebo-controlled, double-blind study (RUSSLAN). Eur Heart J 2002, 23:1422–1432.

    Article  PubMed  CAS  Google Scholar 

  47. Follath F, Cleland JG, Just H, et al.: Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet 2002, 360:196–202.

    Article  PubMed  CAS  Google Scholar 

  48. Zairis MN, Apostolatos C, Anastassiadis F, et al.: Comparison of the effect of levosimendan, or dobutamine or placebo in chronic low output decompensated heart failure. Calcium Sensitizer or Inotrope or None in Low Output Heart Failure (CASINO) Study [abstract 273]. Presented at the European Society of Cardiology Heart Failure Update. Wroclaw, Poland; June 12–15, 2004.

  49. Clozel M, Ramuz H, Clozel JP, et al.: Pharmacology of tezosentan, new endothelin receptor antagonist designed for parenteral use. J Pharmacol Exp Ther 1999, 290:840–846.

    PubMed  CAS  Google Scholar 

  50. Gheorghiade M, Niazi I, Ouyang J, et al.: Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation 2003, 107:2690–2696.

    Article  PubMed  CAS  Google Scholar 

  51. Gheorghiade M, Gattis WA, O’Connor CM, et al.: Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 2004, 291:1963–1971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihu Z. Gazit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazit, A.Z., Oren, P.P. Pharmaceutical management of decompensated heart failure syndrome in children: Current state of the art and a new approach. Curr Treat Options Cardio Med 11, 403–409 (2009). https://doi.org/10.1007/s11936-009-0042-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-009-0042-4

Keywords

Navigation