Skip to main content

Advertisement

Log in

Cell-based therapies after myocardial injury

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Recent translational research into the emerging field of cardiac cell therapy has paved the way for novel clinical treatment strategies. However, neither the ideal source and type of cell nor the critical quantity and mode of application have yet been defined. In patients who have undergone acute myocardial infarction, several cell-based approaches are currently being evaluated, such as intracoronary delivery of autologous mononuclear bone marrow cells or enriched hematopoietic progenitor cell products; systemic cytokine stimulation with release of bone marrow progenitor cells into the systemic circulation; and both intravenous and intracoronary delivery of allogenic marrow stroma cell-derived cells. There are potentially encouraging data for each of these strategies, based to date on small cohorts with conflicting or equivocal recovery of function. Taken together, it is too early to consider cell therapy for heart disease to be effective. Future setbacks are likely, but both clinicians and basic scientists will eventually introduce more potent cell-based strategies into the clinical arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Okrainec K, Banerjee DK, Eisenberg MJ: Coronary artery disease in the developing world. Am Heart J 2004, 148:7–15.

    Article  PubMed  Google Scholar 

  2. Antman EM, Van de Werf F: Pharmacoinvasive therapy: the future of treatment for ST-elevation myocardial infarction. Circulation 2004, 109:2480–2486.

    Article  PubMed  Google Scholar 

  3. Eagle KA, Goodman SG, Avezum A, et al.: Practice variation and missed opportunities for reperfusion in STsegment-elevation myocardial infarction: findings from the Global Registry of Acute Coronary Events (GRACE). Lancet 2002, 359:373–377.

    Article  PubMed  Google Scholar 

  4. Antman EM, Anbe DT, Armstrong PW, et al.: ACC/AHA guidelines for the management of patients with STelevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of Patients with Acute Myocardial Infarction). Circulation 2004, 110:e82-e292.

    Article  PubMed  Google Scholar 

  5. Klein HM, Ghodsizad A, Borowski A, et al.: Autologous bone marrow-derived stem cell therapy in combination with TMLR. A novel therapeutic option for endstage coronary heart disease: report on 2 cases. Heart Surg Forum 2004, 7:E416-E419.

    PubMed  Google Scholar 

  6. Pagani FD, DerSimonian H, Zawadzka A, et al.: Autologous skeletal myoblasts transplanted to ischemiadamaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 2003, 41:879–888.

    Article  PubMed  Google Scholar 

  7. Taylor DA, Atkins BZ, Hungspreugs P, et al.: Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998, 4:929–933.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor DA: Cell-based myocardial repair: how should we proceed? Int J Cardiol 2004, 95:S8-S12.

    Article  PubMed  Google Scholar 

  9. Menasche P, Hagege AA, Scorsin M, et al.: Myoblast transplantation for heart failure. Lancet 2001, 357:279–280.

    Article  PubMed  CAS  Google Scholar 

  10. Hagege AA, Carrion C, Menasche P, et al.: Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 2003, 361:491–492.

    Article  PubMed  Google Scholar 

  11. Leobon B, Garcin I, Menasche P, et al.: Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A 2003, 100:7808–7811.

    Article  PubMed  CAS  Google Scholar 

  12. Menasche P, Hagege AA, Vilquin JT, et al.: Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003, 41:1078–1083. First study of myoblast transplantation during CABG in humans. First report of possible association of ventricular tachycardia and myoblasts.

    Article  PubMed  Google Scholar 

  13. Herreros J, Prosper F, Perez A, et al.: Autologous intramyocardial injection of cultured skeletal muscle derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003, 24:2012–2020.

    Article  PubMed  Google Scholar 

  14. Siminiak T, Kalawski R, Fiszer D, et al.: Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 2004, 148:531–537.

    Article  PubMed  Google Scholar 

  15. Dib N, Michler RE, Pagani FD, et al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation 2005, 112:1748–1755.

    Article  PubMed  Google Scholar 

  16. Smits PC, van Geuns RJ, Poldermans D, et al.: Catheterbased intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 2003, 42:2063–2069.

    Article  PubMed  Google Scholar 

  17. Ince H, Petzsch M, Rehders TC, et al.: Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction. J Endovasc Ther 2004, 11:695–704.

    Article  PubMed  Google Scholar 

  18. Siminiak T, Fiszer D, Jerzykowska O, et al.: Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of postinfarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 2005, 26:1188–1195.

    Article  PubMed  Google Scholar 

  19. Tse HF, Kwong YL, Chan JK, et al.: Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 2003, 361:47–49.

    Article  PubMed  Google Scholar 

  20. Fuchs S, Satler LF, Kornowski R, et al.: Catheter-based autologous bone marrow myocardial injection in nooption patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol 2003, 41:1721–1724.

    Article  PubMed  Google Scholar 

  21. Perin EC, Dohmann HF, Borojevic R, et al.: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003, 107:2294–2302.

    Article  PubMed  Google Scholar 

  22. Perin EC, Dohmann HF, Borojevic R, et al.: Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004, 110(suppl 1):II213-II218.

    PubMed  Google Scholar 

  23. Galinanes M, Loubani M, Davies J, et al.: Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans. Cell Transplant 2004, 13:7–13.

    PubMed  Google Scholar 

  24. Stamm C, Westphal B, Kleine HD, et al.: Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003, 361:45–46. First report of CD133+ cell transplantation in humans.

    Article  PubMed  Google Scholar 

  25. Stamm C, Kleine HD, Westphal B, et al.: CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac Cardiovasc Surg 2004, 52:152–158.

    Article  PubMed  CAS  Google Scholar 

  26. Archundia A, Aceves JL, Lopez-Hernandez M, et al.: Direct cardiac injection of G-CSF mobilized bonemarrow stem-cells improves ventricular function in old myocardial infarction. Life Sci 2005, 78:279–283.

    Article  PubMed  CAS  Google Scholar 

  27. Kuethe F, Richartz BM, Kasper C, et al.: Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 2005, 100:485–491.

    Article  PubMed  Google Scholar 

  28. Erbs S, Linke A, Adams V, et al.: Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005, 97:756–762.

    Article  PubMed  CAS  Google Scholar 

  29. Strauer BE, Brehm M, Zeus T, et al.: Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005, 46:1651–1658.

    Article  PubMed  Google Scholar 

  30. Heeschen C, Lehmann R, Honold J, et al.: Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 2004, 109:1615–1622.

    Article  PubMed  Google Scholar 

  31. Kocher AA, Schuster MD, Szabolcs MJ, et al.: Neovascularization of ischemic myocardium by human bonemarrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001, 7:430–436.

    Article  PubMed  CAS  Google Scholar 

  32. Quirici N, Soligo D, Caneva L, et al.: Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol 2001, 115:186–194.

    Article  PubMed  CAS  Google Scholar 

  33. Strauer BE, Brehm M, Zeus T, et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002, 106:1913–1918.

    Article  PubMed  Google Scholar 

  34. Assmus B, Schachinger V, Teupe C, et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002, 106:3009–3017.

    Article  PubMed  Google Scholar 

  35. Britten MB, Abolmaali ND, Assmus B, et al.: Infarct remodeling after intracoronary progenitor cell treatment in patients with acute myocardial infarction (TOPCARE-AMI): mechanistic insights from serial contrast-enhanced magnetic resonance imaging. Circulation 2003, 108:2212–2218.

    Article  PubMed  CAS  Google Scholar 

  36. Schächinger V, Assmus B, Britten MB, et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004, 44:1690–1699.

    Article  PubMed  Google Scholar 

  37. Fernández-Avilés F, San Roman JA, Garcia-Frade J, et al.: Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004, 95:742–748.

    Article  PubMed  Google Scholar 

  38. Wollert KC, Meyer GP, Lotz J, et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004, 364:141–148.

    Article  PubMed  Google Scholar 

  39. Bartunek J, Vanderheyden M, Vandekerckhove B, et al.: Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation 2005, 112:I178-I183.

    PubMed  Google Scholar 

  40. Meyer GP, Wollert KC, Lotz J, et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006, 113:1287–1294. First randomized trial of intracoronary BMC transfer after AMI with a follow-up of 18 months.

    Article  PubMed  Google Scholar 

  41. Janssens S, Dubois C, Bogaert J, et al.: Autologous bone marrow-derived stem-cell transfer in patients with STsegment elevation myocardial infarction: doubleblind, randomised controlled trial. Lancet 2006, 367: 113–121. First randomized trial of early intracoronary BMC transfer after AMI.

    Article  PubMed  Google Scholar 

  42. Lunde K: Effects on left ventricular function by intracoronary injections of autologous mononuclear bone marrow cells in acute anterior wall myocardial infarction: the ASTAMI randomized controlled trial. Available online at http://scientificsessions.americanheart.org/portal/scientificsession/ ss/lbctnewsrelease14. Accessed November 15, 2005. Important study with a negative result.

  43. Schächinger S: Intracoronary infusion of bone marrow-derived progenitor cells in acute myocardial infarction: a randomized, double-blind, placebo-controlled multicenter trial (REPAIR-AMI). Available online at http://scientificsessions.americanheart.org/ portal/scientificsessions/ss/lbctnewsrelease1. Accessed November 13, 2005. First multicenter trial with a very good study design. In contrast to the ASTAMI, this study showed benefical results after intracoronary stem cell transfer in AMI.

  44. Kuethe F, Richartz BM, Sayer HG, et al.: Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol 2004, 97:123–12745.

    Article  PubMed  Google Scholar 

  45. Murry CE, Soonpaa MH, Reinecke H, et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004, 428:664–668.

    Article  PubMed  CAS  Google Scholar 

  46. Ince H, Petzsch M, Kleine HD, et al.: Prevention of left ventricular remodeling with G-CSF after acute myocardial infarction: final one-year results of the FIRSTLINE-AMI trial (Front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by granulocyte colony-stimulating factor). Circulation 2005, 112(9 suppl):I73-I80.

    PubMed  Google Scholar 

  47. Shintani S, Murohara T, Ikeda H, et al.: Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 2001, 103:2776–2779.

    PubMed  CAS  Google Scholar 

  48. Wojakowski W, Tendera M, Michalowska A, et al.: Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004, 110:3213–3220.

    Article  PubMed  CAS  Google Scholar 

  49. Leone AM, Rutella S, Bonanno G, et al.: Mobilization of bone marrow derived stem cells after myocardial infarction and left ventricular function. Eur Heart J 2005, 26:1196–1204.

    Article  PubMed  Google Scholar 

  50. Valgimigli M, Rigolin GM, Fucili A, et al.: CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation 2004, 110:1209–1212.

    Article  PubMed  CAS  Google Scholar 

  51. Leone AM, Rutella S, Bonanno G, et al.: Endogenous GCSF and CD34+ cell mobilization after acute myocardial infarction. Int J Cardiol 2006, 111:202–208.

    Article  PubMed  Google Scholar 

  52. Ince H, Petzsch M, Kleine HD, et al.: Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction using granulocyte-colony stimulating factor (FIRSTLINE-AMI). Circulation 2005, 112:3097–3106. First randomized trial with a very early application of G-CSF after AMI.

    Article  PubMed  CAS  Google Scholar 

  53. Zohlnhofer D, Ott I, Mehilli J, et al.: Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction, a randomized controlled trial. JAMA 2006, 295:1003–1010. First randomized controlled trial with a very late application of G-CSF after AMI.

    Article  PubMed  Google Scholar 

  54. Harada M, Qin Y, Takano H, et al.: G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 2005, 11:305–311. Important experimental findings for direct cardioprotective effects of G-CSF.

    Article  PubMed  CAS  Google Scholar 

  55. Valgimigli M, Rigolin GM, Cittanti C, et al.: Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005, 26:1838–1845.

    Article  PubMed  CAS  Google Scholar 

  56. Kuethe F, Figulla HR, Herzau M, et al.: Treatment with granulocyte colony-stimulating factor for mobilization of bone marrow cells in patients with acute myocardial infarction. Am Heart J 2005, 150:115.

    Article  PubMed  CAS  Google Scholar 

  57. Suarez de Lezo J, Torres A, Herrera I, et al.: Effects of stem-cell mobilization with recombinant human granulocyte colony stimulating factor in patients with percutaneously revascularized acute anterior myocardial infarction. Rev Esp Cardiol 2005, 58:238–240.

    Article  Google Scholar 

  58. Ripa RS, Jorgensen E, Wang Y, et al.: Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006, 113:1983–1992.

    Article  PubMed  CAS  Google Scholar 

  59. Kang HJ, Kim HS, Zhang SY, et al.: Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet 2004, 363:751–756.

    Article  PubMed  CAS  Google Scholar 

  60. Fukuda D, Shimada K, Tanaka A, et al.: Circulating monocytes and in-stent neointima after coronary stent implantation. J Am Coll Cardiol 2004, 43:18–23.

    Article  PubMed  Google Scholar 

  61. Kong D, Melo LG, Gnecchi M, et al.: Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 2004, 110:2039–2046.

    Article  PubMed  CAS  Google Scholar 

  62. Takamiya M, Okigaki M, Jin D, et al.: Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/ Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol 2006, 26:751–757.

    Article  PubMed  CAS  Google Scholar 

  63. Jiang Y, Jahagirdar BN, Reinhardt RL, et al.: Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418:41–49.

    Article  PubMed  CAS  Google Scholar 

  64. Toma C, Pittenger MF, Cahill KS, et al.: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002, 105:93–98.

    Article  PubMed  Google Scholar 

  65. Chen SL, Fang WW, Ye F, et al.: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004, 94:92–95.

    Article  PubMed  Google Scholar 

  66. Katritsis DG, Sotiropoulou PA, Karvouni E, et al.: Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium. Catheter Cardiovasc Interv 2005, 65:321–329.

    Article  PubMed  Google Scholar 

  67. Vulliet PR, Greeley M, Halloran SM, et al.: Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004, 363:783–784.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ince, H., Stamm, C. & Nienaber, C.A. Cell-based therapies after myocardial injury. Curr Treat Options Cardio Med 8, 484–495 (2006). https://doi.org/10.1007/s11936-006-0037-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-006-0037-3

Keywords

Navigation