Skip to main content

Advertisement

Log in

Robotic Surgery for Stone Disease

  • Endourology (P Mucksavage and BK Somani, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To evaluate recent literature regarding the role of robotic technology in the treatment of nephrolithiasis with particular attention to complex technical procedures.

Recent Findings

Robotic platforms including single-port robotics have been widely adopted in urological practice for the treatment of both malignant and benign conditions and has led to an expansion of the utilization of robot-assisted surgery to tackle challenging clinical scenarios such as bladder neck reconstruction, upper urinary tract reconstruction, and more recently complex stone disease. Presently, the American Urological Association guidelines on the surgical management of stones advise against using robotic, open, or laparoscopic techniques as a first-line approach for most patients with stone disease with the exception for patients with anatomical abnormalities, large or complex stones, or patients requiring a concomitant reconstructive operation. Clinicians have demonstrated the safety and feasibility of surgical robotics in the treatment of stone disease for a variety of operations including robotic pyeloplasty, pyelolithotomy, ureterolithotomy, and surgical interventions in urinary diversions as well as novel technologies for robotic ureteroscopy and percutaneous access.

Summary

Numerous clinicians have demonstrated the safety and feasibility of using robot-assisted surgery to treat nephrolithiasis, mainly in complex renal anatomy. Further research is necessary to identify the best candidates for utilization of robotics in complex stone disease, and further technological developments will continue to further advance the use of these platforms in the treatment of nephrolithiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tefekli A, Cezayirli F. The history of urinary stones: in parallel with civilization. Sci World J. 2013;2013:1–5.

    Google Scholar 

  2. Francavilla S, Veccia A, Dobbs RW, et al. Radical prostatectomy technique in the robotic evolution: from da Vinci standard to single port—a single surgeon pathway. J Robot Surg. 2022;16:21–7.

    Article  PubMed  Google Scholar 

  3. • Dobbs RW, Halgrimson WR, Talamini S, Vigneswaran HT, Wilson JO, Crivellaro S. Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol. 2019;38(4):897–905. Demonstrates utilization of the single-port da Vinci platform for a variety of operations including pyelolithotomy, pyeloplasty and ureteral reimplant operations.

    Article  PubMed  Google Scholar 

  4. Assimos D, Krambeck A, Miller NL, et al. Surgical management of stones: American urological association/endourological society guideline. J Urol. 2016;196(4):1153–69.

    Article  PubMed  Google Scholar 

  5. Gaur DD, Trivedi S, Prabhudesai MR, Madhusudhana HR, Gopichand M. Laparoscopic ureterolithotomy: technical considerations and long-term follow-up. BJU Int. 2002;89(4):339–43.

    Article  CAS  PubMed  Google Scholar 

  6. Atug F, Castle EP, Burgess SV, Thomas R. Concomitant management of renal calculi and pelvi-ureteric junction obstruction with robotic laparoscopic surgery. BJU Int. 2005;96(9):1365–8.

    Article  PubMed  Google Scholar 

  7. Turk C, Petrık A, Sarica K, et al. EAU guidelines on interventional treatment for urolithiasis. Eur Urol. 2016;69:475–82.

    Article  PubMed  Google Scholar 

  8. Desai M, De Lisa A, Turna B, et al. The clinical research office of the endourological society percutaneous nephrolithotomy global study: staghorn versus nonstaghorn stones. J Endourol. 2011;25:1263–8.

    Article  PubMed  Google Scholar 

  9. Raman JD, Bagrodia A, Gupta A, et al. Natural history of residual fragments following percutaneous nephrostolithotomy. J Urol. 2009;181:1163–8.

    Article  PubMed  Google Scholar 

  10. Portis AJ, Laliberte MA, Tatman P, Lendway L, Rosenberg MS, Bretzke CA. Retreatment after percutaneous nephrolithotomy in the computed tomographic era: long-term follow-up. Urology. 2014;84:279–84.

    Article  PubMed  Google Scholar 

  11. Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906.

    Article  PubMed  Google Scholar 

  12. Madi R, Hemal A. Robotic pyelolithotomy, extended pyelolithotomy, nephrolithotomy, and anatrophic nephrolithotomy. J Endourol. 2018;32(S1):S73–81.

    Article  PubMed  Google Scholar 

  13. King SA, Klaassen Z, Madi R. Robot-assisted anatrophic nephrolithotomy: description of technique and early results. J Endourol. 2014;28:325–9.

    Article  PubMed  Google Scholar 

  14. Ghani KR, Trinh QD, Jeong W, Friedman A, Lakshmanan Y, Omenon M, et al. Robotic nephrolithotomy and pyelolithotomy with utilization of the roboticultrasound probe. Int Braz J Urol. 2014;40:125–6.

    Article  PubMed  Google Scholar 

  15. Swearingen R, Sood A, Madi R, et al. Zero-fragment nephrolithotomy: a multi-center evaluation of robotic pyelolithotomy and nephrolithotomy for treating renal stones. Eur Urol. 2017;72(6):1014–21.

    Article  PubMed  Google Scholar 

  16. Yadav R, Agarwal S, Sankhwar S, et al. A prospective study evaluating impact on renal function following percutaneous nephrolithotomy using Tc99m ethylenedicysteine renal scan: does multiplicity of access tracts play a role? Investig Clin Urol. 2019;60(1):21–8.

    Article  PubMed  Google Scholar 

  17. Taylor Z, Keating K, Rohloff M, Maatman TJ. Robotic management of large stone disease: a case series. J Robot Surg. 2020;14(6):855–9.

    Article  PubMed  Google Scholar 

  18. • Schulster ML, Sidhom DA, Sturgeon K, Borin JF, Bjurlin MA. Outcomes and peri-operative complications of robotic pyelolithotomy. J Robot Surg. 2020;14(3):401–7. Recent retrospective study of 15 patients undergoing robotic pyelolithotomy. Provides operative set-up and technique with port placement for robotic pyelolithotomy as well as contemporary surgical outcomes.

    Article  PubMed  Google Scholar 

  19. Garisto JD, Dagenais J, Arora H, Bertolo R, Kaouk JH. Concurrent robotic pyelolithotomy and partial nephrectomy: tips and tricks. J Urol. 2018;118:243.

    Article  Google Scholar 

  20. Jensen PH, Berg KD, Azawi NH. Robot-assisted pyeloplasty and pyelolithotomy in patients with ureteropelvic junction stenosis. Scand J Urol. 2017;51:323–8.

    Article  PubMed  Google Scholar 

  21. Hemal AK, Nayyar R, Gupta NP, Dorairajan LN. Experience with robotic assisted laparoscopic surgery in upper tract urolithiasis. Can J Urol. 2010;17(4):5299–305.

    PubMed  Google Scholar 

  22. •• Esposito C, Masieri L, Blanc T, Lendvay T, Escolino M. Robot-assisted laparoscopic surgery for treatment of urinary tract stones in children: report of a multicenter international experience. Urolithiasis. 2021;49:575–83. Multi-institutional trial of pediatric patients undergoing robot-assisted laparoscopic surgery. Within this study, patients had stones in kidney, bladder and multiple locations, majority of patients in study had concurrent repair of UPJ at the time of stone removal.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Scarcella S, Tiroli M, Torino G, Mariscoli F, Cobellis G, Galosi AB. Combined treatment of ureteropelvic junction obstruction and renal calculi with robot-assisted laparoscopic pyeloplasty and laser lithotripsy in children: case report and non-systematic review of the literature. Int J Med Robot. 2021;17:e2246.

    Article  PubMed  Google Scholar 

  24. Roth JD, Gargollo PC, DaJusta DG, Lindgren BW, Noh PH, Rensing AJ, et al. Endoscopic-assisted robotic pyelolithotomy: a viable treatment option for complex pediatric nephrolithiasis. J Pediatr Urol. 2020;16(192):e1–5.

    Google Scholar 

  25. Andolfi C, Rodriguez VM, Galansky L, Gundeti MS. Infant robot-assisted laparoscopic pyeloplasty: outcomes at a single institution, and tips for safety and success. Eur Urol. 2021;80(5):621–31.

    Article  PubMed  Google Scholar 

  26. Dogra PN, Regmi SK, Singh P, et al. Lower ureteral stones revisited: expanding the horizons of robotics. Urology. 2013;82:95–9.

    Article  PubMed  Google Scholar 

  27. Kallidonis P, Ntasiotis P, Knoll T, Sarica K, Papatsoris A, Somani BK, et al. Minimally invasive surgical ureterolithotomy versus ureteroscopic lithotripsy for large ureteric stones: a systematic review and meta-analysis of the literature. Eur Urol Focus. 2017;3:554–66.

    Article  PubMed  Google Scholar 

  28. Breda A, Mossanen M, Leppert J, Harper J, Schulam PG, Churchill B. Percutaneous cystolithotomy for calculi in reconstructed bladders: initial UCLA experience. J Urol. 2010;183:1989–93.

    Article  PubMed  Google Scholar 

  29. Haffar A, Crigger C, Trump T, Jessop M, Salkini MW. Minimally invasive robotic-assisted cystolithotomy in a complicated urinary diversion: a feasible and safe approach. Case Rep Urol. 2021;14:2021.

    Google Scholar 

  30. Tomaszewski JJ, Ortiz TD, Gayed BA, et al. Renal access by urologist or radiologist during percutaneous nephrolithotomy. J Endourol. 2010;24:1733–7.

    Article  PubMed  Google Scholar 

  31. • Metzler IS, Holt S, Harper JD. Surgical trends in nephrolithiasis: increasing de novo renal access by urologists for percutaneous nephrolithotomy. J Endourol. 2021;35(6):769–74. Provides contemporary utilization trends for several operative modalities including URS, ESWL and PCNL between 2007-2017. Demonstrates trend during this time with urologist acquired access for PCNL rising from 12.8% to 32.3%.

    Article  PubMed  Google Scholar 

  32. Su L-M, Stoianovici D, Jarrett TW, et al. Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol. 2002;16(7):471–5.

    Article  PubMed  Google Scholar 

  33. Pollock R, Mozer P, Guzzo TJ, Marx J, Matlaga B, Petrisor D, Vigaru B, Badaan S, Stoianovici D, Allaf ME. Prospects in percutaneous ablative targeting: comparison of a computer-assisted navigation system and the AcuBot Robotic System. J Endourol. 2010;24:1269–72.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Oo MM, Gandhi HR, Chong KT, Goh JQ, Ng KW, Hein AT, Tan YK. Automated needle targeting with X-ray (ANT-X) - robot-assisted device for percutaneous nephrolithotomy (PCNL) with its first successful use in human. J Endourol. 2021;35(6):e919.

    Article  PubMed  Google Scholar 

  35. Taguchi K, Hamamoto S, Okada A, Sugino T, Unno R, Kato T, Fukuta H, Ando R, Kawai N, Tan YK, Yasui T. A Randomized, single-blind clinical trial comparing robotic-assisted fluoroscopic-guided with ultrasound-guided renal access for percutaneous nephrolithotomy. J Urol. 2022;208(3):684–94.

    Article  PubMed  Google Scholar 

  36. Elkoushy MA, Andonian S. Prevalence of orthopedic complaints among endourologists and their compliance with radiation safety measures. J Endourol. 2011;25(10):1609–13.

    Article  PubMed  Google Scholar 

  37. Desai MM, Aron M, Gill IS, Pascal-Haber G, Ukimura O, Kaouk JH, et al. Flexible robotic retrograde renoscopy: description of novel robotic device and preliminary laboratory experience. Urology. 2008;72:42–6.

    Article  PubMed  Google Scholar 

  38. Desai MM, Grover R, Aron M, et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol. 2011;186:563–8.

    Article  PubMed  Google Scholar 

  39. Rassweiler J, Fiedler M, Charalampogiannis N, Kabakci AS, Saglam R, Klein JT. Robot-assisted flexible ureteroscopy: an update. Urolithiasis. 2018;46:69–77.

    Article  PubMed  Google Scholar 

  40. Saglam R, Muslumanoglu AY, Tokatli Z, Caskurlu T, Sarica K, Tasci AI, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1–2b). Eur Urol. 2014;66:1092–100.

    Article  PubMed  Google Scholar 

  41. Geavlete P, Saglam R, Georgescu D, et al. Robotic flexible ureteroscopy versus classic flexible ureteroscopy in renal stones: the initial Romanian experience. Chirurgia (Bucur). 2016;111:326–9.

    PubMed  Google Scholar 

  42. Klein JT, Fiedler M, Kabuki AS, et al. 1032 prospective European multicentre clinical results of kidney stone treatment using the Avicenna Roboflex URS robot. Eur Urol Suppl. 2016;15: e1032.

    Article  Google Scholar 

  43. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, Rha KH, Schurr M, Kaouk J, Patel V, Dasgupta P, Liatsikos E. Future of robotic surgery in urology. BJU Int. 2017;120(6):822–41.

    Article  PubMed  Google Scholar 

  44. Vordos N, Giannakopoulos S, Gkika DA, Nolan JW, Kalaitzis C, Bandekas DV, Kontogoulidou C, Mitropoulos AC, Touloupidis S. Kidney stone nano-structure - is there an opportunity for nanomedicine development? Biochim Biophys Acta Gen Subj. 2017;1861(6):1521–9.

    Article  CAS  PubMed  Google Scholar 

  45. Schamel D, Mark AG, Gibbs JG, Miksch C, Morozov KI, Leshansky AM, et al. Nanopropellers and their actuation in complex viscoelastic media. ACS Nano. 2014;8:8794–801.

    Article  CAS  PubMed  Google Scholar 

  46. Dobbs RW, Magnan BP, Abhyankar N, Hemal AK, Challacombe B, Hu J, Dasgupta P, Porpiglia F, Crivellaro S. Cost effectiveness and robot-assisted urologic surgery: does it make dollars and sense? Minerva Urol Nefrol. 2017;69(4):313–23.

    PubMed  Google Scholar 

  47. Hyams ES, Shah O. Percutaneous nephrostolithotomy versus flexible ureteroscopy/holmium laser lithotripsy: cost and outcome analysis. J Urol. 2009;182:1012–7.

    Article  PubMed  Google Scholar 

  48. Mir SA, Cadeddu JA, Sleeper JP, Loan Y. Cost comparison of robotic laparoscopic, and open partial nephrectomy. J Endourol. 2011;25:447–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan W. Dobbs.

Ethics declarations

Conflict of Interest

Dr. Crivellaro is a consultant for Intuitive Surgical Inc., Medtronic Inc. & Richard Wolf Medical Instruments Inc. Dr. Dobbs is a consultant for Verathon Inc. and Medtronic Inc. Drs. Hasan, Reed, and Shahait have no conflicts of interest to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Endourology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, O., Reed, A., Shahait, M. et al. Robotic Surgery for Stone Disease. Curr Urol Rep 24, 127–133 (2023). https://doi.org/10.1007/s11934-022-01131-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-022-01131-8

Keywords

Navigation