Skip to main content

Thulium Fiber Laser Behavior on Tissue During Upper- and Lower-Tract Endourology


Purpose of Review

To present the latest evidence on thulium fiber laser (TFL) effects on tissue, during lithotripsy and ablation, emphasizing on generated temperatures, thermal damage thresholds, incision depths, areas of coagulation, and laser damage.

Recent Findings

Lasers are frequently utilized during endoscopic treatment of different urological conditions. The holmium:yttrium–aluminum-garnet (Ho:YAG) is most frequently used for various types of stones and soft tissue. The TFL has been recently introduced, offering several advantages. However, its activity on tissue during upper and lower tract endourology is poorly understood.


At equivalent power settings, TFL and Ho:YAG generate similar temperature changes during lithotripsy. TFL has a shallow incision depth during tissue ablation. Compared to SP TFL, (cw) TFL results in a broader coagulation zone, whereas SP TFL gives of Ho:YAG-similar incision, and (cw) TFL offers a quick, precise cut with more carbonization.

This is a preview of subscription content, access via your institution.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Herrmann TR, Liatsikos EN, Nagele U, Traxer O, Merseburger AS. EAU guidelines on laser technologies. Eur Urol. 2012;61(4):783–95.

    Article  Google Scholar 

  2. Larizgoitia I, Pons JM. A systematic review of the clinical efficacy and effectiveness of the holmium:YAG laser in urology. BJU Int. 1999;84(1):1–9.

    Article  CAS  Google Scholar 

  3. Johnson DE, Cromeens DM, Price RE. Use of the holmium:YAG laser in urology. Lasers Surg Med. 1992;12(4):353–63.

    Article  CAS  Google Scholar 

  4. Aldoukhi AH, Black KM, Ghani KR. Emerging laser techniques for the management of stones. Urol Clin North Am. 2019;46(2):193–205.

    Article  Google Scholar 

  5. Kyriazis I, Świniarski PP, Jutzi S, Wolters M, Netsch C, Burchardt M, et al. Transurethral anatomical enucleation of the prostate with Tm:YAG support (ThuLEP): review of the literature on a novel surgical approach in the management of benign prostatic enlargement. World J Urol. 2015;33(4):525–30.

    Article  Google Scholar 

  6. Li K, Xu Y, Tan M, Xia S, Xu Z, Xu D. A retrospective comparison of thulium laser en bloc resection of bladder tumor and plasmakinetic transurethral resection of bladder tumor in primary non-muscle invasive bladder cancer. Lasers Med Sci. 2019;34(1):85–92.

    Article  Google Scholar 

  7. Rieken M, Bachmann A. Laser treatment of benign prostate enlargement–which laser for which prostate? Nat Rev Urol. 2014;11(3):142–52.

    Article  Google Scholar 

  8. •• Sierra A, Corrales M, Piñero A, Traxer O. Thulium fiber laser pre-settings during ureterorenoscopy: Twitter’s experts’ recommendations. World J Urol. 2022;40(6):1529–35. study demonstrating significant differences in applied laser settings between urologists.

    Article  Google Scholar 

  9. • Becker B, Enikeev D, Glybochko P, Rapoport L, Taratkin M, Gross AJ, et al. Effect of optical fiber diameter and laser emission mode (cw vs pulse) on tissue damage profile using 1.94 µm Tm:fiber lasers in a porcine kidney model. World J Urol. 2020;38(6):1563–8. study comparing TFL with Ho:YAG during laser tissue ablation.

  10. Kronenberg P, Traxer O. The laser of the future: reality and expectations about the new thulium fiber laser-a systematic review. Transl Androl Urol. 2019;8(Suppl 4):S398-s417.

    Article  Google Scholar 

  11. Fried NM, Murray KE. High-power thulium fiber laser ablation of urinary tissues at 1.94 microm. J Endourol. 2005;19(1):25–31.

  12. Fried NM. Recent advances in infrared laser lithotripsy [Invited]. Biomed Opt Express. 2018;9(9):4552–68.

    Article  CAS  Google Scholar 

  13. Ventimiglia E, Doizi S, Kovalenko A, Andreeva V, Traxer O. Effect of temporal pulse shape on urinary stone phantom retropulsion rate and ablation efficiency using holmium:YAG and super-pulse thulium fibre lasers. BJU Int. 2020;126(1):159–67.

    Article  CAS  Google Scholar 

  14. Fried NM, Irby PB. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol. 2018;15(9):563–73.

    Article  Google Scholar 

  15. Chan KF, Pfefer TJ, Teichman JM, Welch AJ. A perspective on laser lithotripsy: the fragmentation processes. J Endourol. 2001;15(3):257–73.

    Article  CAS  Google Scholar 

  16. Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, et al. Optimal power settings for Holmium:YAG lithotripsy. J Urol. 2012;187(3):914–9.

    Article  Google Scholar 

  17. Zhong P, Tong HL, Cocks FH, Pearle MS, Preminger GM. Transient cavitation and acoustic emission produced by different laser lithotripters. J Endourol. 1998;12(4):371–8.

    Article  CAS  Google Scholar 

  18. Giambattista ARB, Richardson RC. College physics. Boston: McGraw-Hill; 2004.

    Google Scholar 

  19. Teichman JM, Vassar GJ, Glickman RD. Holmium:yttrium-aluminum-garnet lithotripsy efficiency varies with stone composition. Urology. 1998;52(3):392–7.

    Article  CAS  Google Scholar 

  20. Urano M, Kuroda M, Nishimura Y. For the clinical application of thermochemotherapy given at mild temperatures. Int J Hyperth. North American Hyperthermia Group. 1999;15(2):79–107.

    Article  CAS  Google Scholar 

  21. He X, McGee S, Coad JE, Schmidlin F, Iaizzo PA, Swanlund DJ, et al. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2004;20(6):567–93.

    Article  CAS  Google Scholar 

  22. Liang P, Dong B, Yu X, Yu D, Cheng Z, Su L, et al. Computer-aided dynamic simulation of microwave-induced thermal distribution in coagulation of liver cancer. IEEE Trans Biomed Eng. 2001;48(7):821–9.

    Article  CAS  Google Scholar 

  23. Bach T, Muschter R, Sroka R, Gravas S, Skolarikos A, Herrmann TR, et al. Laser treatment of benign prostatic obstruction: basics and physical differences. Eur Urol. 2012;61(2):317–25.

    Article  Google Scholar 

  24. Peng Y, Liu M, Ming S, Yu W, Li L, Lu C, et al. Safety of a novel thulium fiber laser for lithotripsy: an in vitro study on the thermal effect and its impact factor. J Endourol. 2020;34(1):88–92.

    Article  Google Scholar 

  25. • Hardy LA, Wilson CR, Irby PB, Fried NM. Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt. 2014;19(12): 128001. study comparing TFL with Ho:YAG during laser lithotripsy.

    Article  Google Scholar 

  26. Taratkin M, Laukhtina E, Singla N, Kozlov V, Abdusalamov A, Ali S, et al. Temperature changes during laser lithotripsy with Ho:YAG laser and novel Tm-fiber laser: a comparative in-vitro study. World J Urol. 2020;38(12):3261–6.

    Article  CAS  Google Scholar 

  27. Andreeva V, Vinarov A, Yaroslavsky I, Kovalenko A, Vybornov A, Rapoport L, et al. Preclinical comparison of superpulse thulium fiber laser and a holmium:YAG laser for lithotripsy. World J Urol. 2020;38(2):497–503.

    Article  CAS  Google Scholar 

  28. Molina WR, Carrera RV, Chew BH, Knudsen BE. Temperature rise during ureteral laser lithotripsy: comparison of super pulse thulium fiber laser (SPTF) vs high power 120 W holmium-YAG laser (Ho:YAG). World J Urol. 2021;39(10):3951–6.

    Article  CAS  Google Scholar 

  29. Kallidonis P, Kamal W, Panagopoulos V, Vasilas M, Amanatides L, Kyriazis I, et al. Thulium laser in the upper urinary tract: Does the heat generation in the irrigation fluid pose a risk? Evidence from an in vivo experimental study. J Endourol. 2016;30(5):555–9.

    Article  Google Scholar 

  30. Noureldin YA, Farsari E, Ntasiotis P, Adamou C, Vagionis A, Vrettos T, et al. Effects of irrigation parameters and access sheath size on the intra-renal temperature during flexible ureteroscopy with a high-power laser. World J Urol. 2021;39(4):1257–62.

    Article  CAS  Google Scholar 

  31. Dau JJ, Hall TL, Maxwell AD, Ghani KR, Roberts WW. Effect of chilled irrigation on caliceal fluid temperature and time to thermal injury threshold during laser lithotripsy. in vitro model J Endourol. 2021;35(5):700–5.

    Article  Google Scholar 

  32. Aldoukhi AH, Dau JJ, Majdalany SE, Hall TL, Ghani KR, Hollingsworth JM, et al. Patterns of laser activation during ureteroscopic lithotripsy: effects on caliceal fluid temperature and thermal dose. J Endourol. 2021;35(8):1217–22.

    Article  Google Scholar 

  33. Verdaasdonk RM, van Swol CF, Grimbergen MC, Rem AI. Imaging techniques for research and education of thermal and mechanical interactions of lasers with biological and model tissues. J Biomed Opt. 2006;11(4): 041110.

    Article  Google Scholar 

  34. Doizi S, Germain T, Panthier F, Comperat E, Traxer O, Berthe L. Comparison of Holmium:YAG and Thulium Fiber lasers on soft tissue : an ex vivo study. J Endourol. 2021.

    Article  Google Scholar 

  35. Khoder WY, Zilinberg K, Waidelich R, Stief CG, Becker AJ, Pangratz T, et al. Ex vivo comparison of the tissue effects of six laser wavelengths for potential use in laser supported partial nephrectomy. J Biomed Opt. 2012;17(6): 068005.

    Article  Google Scholar 

  36. Taratkin M, Kovalenko A, Laukhtina E, Paramonova N, Spivak L, Wachtendorf LJ, et al. Ex vivo study of Ho:YAG and thulium fiber lasers for soft tissue surgery: which laser for which case? Lasers Med Sci. 2020.

    Article  Google Scholar 

  37. Taratkin M, Netsch C, Enikeev D, Gross AJ, Herrmann TRW, Korolev D, et al. The impact of the laser fiber-tissue distance on histological parameters in a porcine kidney model. World J Urol. 2021;39(5):1607–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations



V Gkolezakis: Data management, data analysis, manuscript writing. P Rice: Data management, interpreting data. B K Somani: Interpreting data, critical manuscript revision. T Tokas: Protocol/project development, manuscript writing.

Corresponding author

Correspondence to Theodoros Tokas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This review does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Endourology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gkolezakis, V., Rice, P., Somani, B.K. et al. Thulium Fiber Laser Behavior on Tissue During Upper- and Lower-Tract Endourology. Curr Urol Rep 23, 271–278 (2022).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: