Skip to main content

Salvage Pelvic Lymph Node Dissection and Current State of Imaging for Recurrent Prostate Cancer: Does a Standard Exist?

Abstract

Purpose of Review

We aim to evaluate the efficacy of salvage lymph node dissection (SLND) for nodal recurrent prostate cancer after primary treatment. We also provide a review of the diagnostic performance of next-generation sequencing (next-generation imaging (NGI)) radiotracers in the salvage setting.

Recent Findings

Most studies evaluating SLND include a heterogeneous population with a small sample size and are retrospective in design. The 5-year clinical recurrence-free and cancer-specific survival following SLND are 26–52% and 57–89%, respectively, among prospective studies. NGI improves accuracy in detecting nodal recurrence compared to conventional CT, with PMSA PET-CT showing the most promise. However, limited studies exist comparing imaging modalities and performance is variable at low PSA values.

Summary

SLND is a promising treatment option, but more prospective data are needed to determine the ideal surgical candidate and long-term oncologic outcomes. More studies comparing different NGI are needed to determine the best imaging modality in patients who may be candidates for salvage treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Claeys T, Van Praet C, Lumen N, Ost P, Fonteyne V, De Meerleer G, et al. Salvage pelvic lymph node dissection in recurrent prostate cancer: surgical and early oncological outcome. Biomed Res Int. 2015;2015:198543–6. https://doi.org/10.1155/2015/198543.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003;169(2):517–23. https://doi.org/10.1097/01.ju.0000045749.90353.c7.

    PubMed  Article  Google Scholar 

  3. Antonarakis ES, Feng Z, Trock BJ, Humphreys EB, Carducci MA, Partin AW, et al. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int. 2012;109(1):32–9. https://doi.org/10.1111/j.1464-410X.2011.10422.x.

    CAS  PubMed  Article  Google Scholar 

  4. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281(17):1591–7. https://doi.org/10.1001/jama.281.17.1591.

    CAS  PubMed  Article  Google Scholar 

  5. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 2014;65(2):467–79. https://doi.org/10.1016/j.eururo.2013.11.002.

    CAS  PubMed  Article  Google Scholar 

  6. Yossepowitch O, Bianco FJ Jr, Eggener SE, Eastham JA, Scher HI, Scardino PT. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur Urol. 2007;51(4):940–7; discussion 7-8. https://doi.org/10.1016/j.eururo.2006.10.045.

    PubMed  Article  Google Scholar 

  7. Osmonov DK, Aksenov AV, Trick D, Naumann CM, Hamann MF, Faddan AA, et al. Cancer-specific and overall survival in patients with recurrent prostate cancer who underwent salvage extended pelvic lymph node dissection. BMC Urol. 2016;16(1):56. https://doi.org/10.1186/s12894-016-0173-3.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Bjurlin MA, Turkbey B, Rosenkrantz AB, Gaur S, Choyke PL, Taneja SS. Imaging the high-risk prostate cancer patient: current and future approaches to staging. Urology. 2018;116:3–12. https://doi.org/10.1016/j.urology.2017.12.001.

    PubMed  Article  Google Scholar 

  9. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71(4):630–42. https://doi.org/10.1016/j.eururo.2016.08.002.

    PubMed  Article  Google Scholar 

  10. Hyndman ME, Mullins JK, Pavlovich CP. Pelvic node dissection in prostate cancer: extended, limited, or not at all? Curr Opin Urol. 2010;20(3):211–7. https://doi.org/10.1097/MOU.0b013e328338405d.

    PubMed  Article  Google Scholar 

  11. • Pisano F, Gaya JM, Breda A, Palou J. Salvage lymphadenectomy in recurrent prostate cancer: is there evidence of real benefit? World J Urol. 2019;37(8):1551–6. https://doi.org/10.1007/s00345-019-02844-1Eight studies were reviewed that reported SLND of patients with nodal recurrent prostate cancer and had a 5-year follow-up. The review showed evidence of SLND being an option to prolong survival and delay the need for systemic therapy.

    CAS  PubMed  Article  Google Scholar 

  12. Rigatti P, Suardi N, Briganti A, Da Pozzo LF, Tutolo M, Villa L, et al. Pelvic/retroperitoneal salvage lymph node dissection for patients treated with radical prostatectomy with biochemical recurrence and nodal recurrence detected by [11C]choline positron emission tomography/computed tomography. Eur Urol. 2011;60(5):935–43. https://doi.org/10.1016/j.eururo.2011.07.060.

    PubMed  Article  Google Scholar 

  13. Suardi N, Montorsi F. Salvage lymph node dissection: if yes, robotics? BJU Int. 2017;120(3):304–5. https://doi.org/10.1111/bju.13789.

    PubMed  Article  Google Scholar 

  14. •• Fossati N, Suardi N, Gandaglia G, Bravi CA, Soligo M, Karnes RJ, et al. Identifying the optimal candidate for salvage lymph node dissection for nodal recurrence of prostate cancer: results from a large, multi-institutional analysis. Eur Urol. 2019;75(1):176–83. https://doi.org/10.1016/j.eururo.2018.09.009The study aimed to identify optimal candidates for SLND based on predictive preoperative characteristics. In total, 654 patients were treated with pSLND for nodal recurrence of PCa documented by either PET/CT using 11C-choline or 68-Ga-labeled prostate-specific membrane antigen (68Ga-PSMA) ligand.

    PubMed  Article  Google Scholar 

  15. Ost P, Reynders D, Decaestecker K, Fonteyne V, Lumen N, De Bruycker A, et al. Surveillance or metastasis-directed therapy for oligometastatic prostate cancer recurrence: a prospective, randomized, multicenter phase II trial. J Clin Oncol. 2018;36(5):446–53. https://doi.org/10.1200/JCO.2017.75.4853.

    CAS  PubMed  Article  Google Scholar 

  16. • Linxweiler J, Saar M, Al-Kailani Z, Janssen M, Ezziddin S, Stockle M, et al. Robotic salvage lymph node dissection for nodal-only recurrences after radical prostatectomy: perioperative and early oncological outcomes. Surg Oncol. 2018;27(2):138–45. https://doi.org/10.1016/j.suronc.2018.02.010Study with 36 patients who underwent robotic SLND after median time 3.78 years after radical prostatectomy; 25 were preoperatively diagnosed by 68Ga-PSMA-PET/CT (median follow-up 1.2 years [range 0.1;3]) and 11 by 18F-choline-PET/CT (median follow-up time 4 years [range 2.6;4.4]). For the small patient cohort, the study concluded robotic SLND for nodal recurrent PCa is a treatment option with low perioperative morbidity.

    PubMed  Article  Google Scholar 

  17. Abreu A, Fay C, Park D, Quinn D, Dorff T, Carpten J, et al. Robotic salvage retroperitoneal and pelvic lymph node dissection for 'node-only' recurrent prostate cancer: technique and initial series. BJU Int. 2017;120(3):401–8. https://doi.org/10.1111/bju.13741.

    PubMed  Article  Google Scholar 

  18. Montorsi F, Gandaglia G, Fossati N, Suardi N, Pultrone C, De Groote R, et al. Robot-assisted salvage lymph node dissection for clinically recurrent prostate cancer. Eur Urol. 2017;72(3):432–8. https://doi.org/10.1016/j.eururo.2016.08.051.

    PubMed  Article  Google Scholar 

  19. •• Mazzone E, Preisser F, Nazzani S, Tian Z, Bandini M, Gandaglia G, et al. The effect of lymph node dissection in metastatic prostate cancer patients treated with radical prostatectomy: a contemporary analysis of survival and early postoperative outcomes. Eur Urol Oncol. 2019;2(5):541–8. https://doi.org/10.1016/j.euo.2018.10.010The study compared 330 patients with newly diagnosed metastatic prostate cancer treated with prostatectomy between 2004 and 2014; 199 underwent LND and 131 did not. The study showed lower cancer-specific mortality and overall mortality in patients with LND at RP (52% and 35%, respectively) relative to no LND.

    PubMed  Article  Google Scholar 

  20. Jilg CA, Rischke HC, Reske SN, Henne K, Grosu AL, Weber W, et al. Salvage lymph node dissection with adjuvant radiotherapy for nodal recurrence of prostate cancer. J Urol. 2012;188(6):2190–7. https://doi.org/10.1016/j.juro.2012.08.041.

    CAS  PubMed  Article  Google Scholar 

  21. Suardi N, Gandaglia G, Gallina A, Di Trapani E, Scattoni V, Vizziello D, et al. Long-term outcomes of salvage lymph node dissection for clinically recurrent prostate cancer: results of a single-institution series with a minimum follow-up of 5 years. Eur Urol. 2015;67(2):299–309. https://doi.org/10.1016/j.eururo.2014.02.011.

    PubMed  Article  Google Scholar 

  22. Zattoni F, Nehra A, Murphy CR, Rangel L, Mynderse L, Lowe V, et al. Mid-term outcomes following salvage lymph node dissection for prostate cancer nodal recurrence status post-radical prostatectomy. Eur Urol Focus. 2016;2(5):522–31. https://doi.org/10.1016/j.euf.2016.01.008.

    PubMed  Article  Google Scholar 

  23. Karnes RJ, Murphy CR, Bergstralh EJ, DiMonte G, Cheville JC, Lowe VJ, et al. Salvage lymph node dissection for prostate cancer nodal recurrence detected by 11C-choline positron emission tomography/computerized tomography. J Urol. 2015;193(1):111–6. https://doi.org/10.1016/j.juro.2014.08.082.

    PubMed  Article  Google Scholar 

  24. Siriwardana A, Thompson J, van Leeuwen PJ, Doig S, Kalsbeek A, Emmett L, et al. Initial multicentre experience of (68) gallium-PSMA PET/CT guided robot-assisted salvage lymphadenectomy: acceptable safety profile but oncological benefit appears limited. BJU Int. 2017;120(5):673–81. https://doi.org/10.1111/bju.13919.

    CAS  PubMed  Article  Google Scholar 

  25. Deconinck S, Tosco L, Merckx L, Gheysens O, Deroose CM, Baldewijns M, et al. Anatomical mapping of lymph nodes in patients receiving salvage lymphadenectomy based on a positive 11C-choline positron emission tomography/computed tomography scan. Cent European J Urol. 2019;72(3):232–9. https://doi.org/10.5173/ceju.2019.1910.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Jilg CA, Schultze-Seemann W, Drendel V, Vach W, Wieser G, Krauss T, et al. Detection of lymph node metastasis in patients with nodal prostate cancer relapse using (18)F/(11)C-choline positron emission tomography/computerized tomography. J Urol. 2014;192(1):103–10. https://doi.org/10.1016/j.juro.2013.12.054.

    PubMed  Article  Google Scholar 

  27. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171(6 Pt 1):2122–7. https://doi.org/10.1097/01.ju.0000123981.03084.06.

    PubMed  Article  Google Scholar 

  28. Hovels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63(4):387–95. https://doi.org/10.1016/j.crad.2007.05.022.

    CAS  PubMed  Article  Google Scholar 

  29. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: prostate cancer. Version 1.2020. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed April 7 2020.

  30. •• Trabulsi EJ, Rumble RB, Jadvar H, Hope T, Pomper M, Turkbey B, et al. Optimum imaging strategies for advanced prostate cancer: ASCO guideline. J Clin Oncol. 2020:JCO1902757. https://doi.org/10.1200/JCO.19.02757The most recent 2020 ASCO Guideline that reports various recommendations for when next-generational imaging can be utilized to identify advanced prostate cancer.

  31. U.S. Food & Drug Administration. Pharmaceutical quality resources. Positron emission tomography (PET). https://www.fda.gov/drugs/pharmaceutical-quality-resources/positron-emission-tomography-pet. Accessed April 7 2020.

  32. Liu Y, Ghesani NV, Zuckier LS. Physiology and pathophysiology of incidental findings detected on FDG-PET scintigraphy. Semin Nucl Med. 2010;40(4):294–315. https://doi.org/10.1053/j.semnuclmed.2010.02.002.

    PubMed  Article  Google Scholar 

  33. Jadvar H. Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging. 2013;40(Suppl 1):S5–10. https://doi.org/10.1007/s00259-013-2361-7.

    CAS  PubMed  Article  Google Scholar 

  34. Chang CH, Wu HC, Tsai JJ, Shen YY, Changlai SP, Kao A. Detecting metastatic pelvic lymph nodes by 18F-2-deoxyglucose positron emission tomography in patients with prostate-specific antigen relapse after treatment for localized prostate cancer. Urol Int. 2003;70(4):311–5. https://doi.org/10.1159/000070141.

    PubMed  Article  Google Scholar 

  35. Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol. 2003;169(4):1337–40. https://doi.org/10.1097/01.ju.0000056901.95996.43.

    CAS  PubMed  Article  Google Scholar 

  36. Richter JA, Rodriguez M, Rioja J, Penuelas I, Marti-Climent J, Garrastachu P, et al. Dual tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Mol Imaging Biol. 2010;12(2):210–7. https://doi.org/10.1007/s11307-009-0243-y.

    PubMed  Article  Google Scholar 

  37. Bhargava P, Ravizzini G, Chapin BF, Kundra V. Imaging biochemical recurrence after prostatectomy: where are we headed? AJR Am J Roentgenol. 2020;214:1–11. https://doi.org/10.2214/AJR.19.21905.

    Article  Google Scholar 

  38. Treglia G, Ceriani L, Sadeghi R, Giovacchini G, Giovanella L. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med. 2014;52(5):725–33. https://doi.org/10.1515/cclm-2013-0675.

    CAS  PubMed  Article  Google Scholar 

  39. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med. 2013;38(5):305–14. https://doi.org/10.1097/RLU.0b013e3182867f3c.

    PubMed  Article  Google Scholar 

  40. Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37(2):301–9. https://doi.org/10.1007/s00259-009-1253-3.

    PubMed  Article  Google Scholar 

  41. Castellucci P, Ceci F, Fanti S. Imaging of prostate cancer using (11)C-choline PET/computed tomography. Urol Clin North Am. 2018;45(3):481–7. https://doi.org/10.1016/j.ucl.2018.03.007.

    PubMed  Article  Google Scholar 

  42. Cimitan M, Bortolus R, Morassut S, Canzonieri V, Garbeglio A, Baresic T, et al. [18F]Fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging. 2006;33(12):1387–98. https://doi.org/10.1007/s00259-006-0150-2.

    PubMed  Article  Google Scholar 

  43. Grassi I, Nanni C, Allegri V, Morigi JJ, Montini GC, Castellucci P, et al. The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol Imaging. 2012;2(1):33–47.

    CAS  PubMed  Google Scholar 

  44. Schuster DM, Nanni C, Fanti S. PET tracers beyond FDG in prostate cancer. Semin Nucl Med. 2016;46(6):507–21. https://doi.org/10.1053/j.semnuclmed.2016.07.005.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Almeida FD, Yen CK, Scholz MC, Lam RY, Turner J, Bans LL, et al. Performance characteristics and relationship of PSA value/kinetics on carbon-11 acetate PET/CT imaging in biochemical relapse of prostate cancer. Am J Nucl Med Mol Imaging. 2017;7(1):1–11.

    PubMed  PubMed Central  Google Scholar 

  46. Daouacher G, von Below C, Gestblom C, Ahlstrom H, Grzegorek R, Wassberg C, et al. Laparoscopic extended pelvic lymph node (LN) dissection as validation of the performance of [(11) C]-acetate positron emission tomography/computer tomography in the detection of LN metastasis in intermediate- and high-risk prostate cancer. BJU Int. 2016;118(1):77–83. https://doi.org/10.1111/bju.13202.

    PubMed  Article  Google Scholar 

  47. Schumacher MC, Radecka E, Hellstrom M, Jacobsson H, Sundin A. [11C]Acetate positron emission tomography-computed tomography imaging of prostate cancer lymph-node metastases correlated with histopathological findings after extended lymphadenectomy. Scand J Urol. 2015;49(1):35–42. https://doi.org/10.3109/21681805.2014.932840.

    CAS  PubMed  Article  Google Scholar 

  48. Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2003;30(4):607–11. https://doi.org/10.1007/s00259-002-1104-y.

    CAS  PubMed  Article  Google Scholar 

  49. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43(2):181–6.

    CAS  PubMed  Google Scholar 

  50. Rajarubendra N, Almeida F, Manojlovic Z, Ohe C, Ahmadi N, Cacciamani G, et al. Histological validation of 11carbon-acetate positron emission tomography/computerized tomography in detecting lymph node metastases in prostate cancer. J Urol. 2019;201(2):332–41. https://doi.org/10.1016/j.juro.2018.09.028.

    PubMed  Article  Google Scholar 

  51. Regula N, Haggman M, Johansson S, Sorensen J. Malignant lipogenesis defined by (11)C-acetate PET/CT predicts prostate cancer-specific survival in patients with biochemical relapse after prostatectomy. Eur J Nucl Med Mol Imaging. 2016;43(12):2131–8. https://doi.org/10.1007/s00259-016-3449-7.

    CAS  PubMed  Article  Google Scholar 

  52. Yu EY, Muzi M, Hackenbracht JA, Rezvani BB, Link JM, Montgomery RB, et al. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med. 2011;36(3):192–8. https://doi.org/10.1097/RLU.0b013e318208f140.

    PubMed  PubMed Central  Article  Google Scholar 

  53. • Regula N, Kostaras V, Johansson S, Trampal C, Lindstrom E, Lubberink M, et al. Comparison of (68)Ga-PSMA-11 PET/CT with (11)C-acetate PET/CT in re-staging of prostate cancer relapse. Sci Rep. 2020a;10(1):4993. https://doi.org/10.1038/s41598-020-61910-6This prospective comparative study indicates 68Ga-PSMA-11 PET/CT had better diagnostic performance than 11C-acetate PET/CT in detecting lymph node (81% vs. 60%, p= 0.02) and bone metastasis (95% vs. 61%, p= 0.0001) in patients with PCa recurrence. However, studies have shown PSMA expression is heterogeneous which may indicate pairing an additional tracer.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. • Regula N, Honarvar H, Lubberink M, Jorulf H, Ladjevardi S, Haggman M, et al. Carbon flux as a measure of prostate cancer aggressiveness: [(11)C]-acetate PET/CT. Int J Med Sci. 2020b;17(2):214–23. https://doi.org/10.7150/ijms.39542Prospective study that included 21 patients (mean age 65, range 51–75 years) with newly diagnosed low–moderate-risk prostate cancer received MRI and dynamic 11C-acetate PET-CT examinations of the pelvis, then in vitro kinetics studies of 11C-acetate were conducted. The study demonstrated potential for dynamic 11C-acetate-PET to visualize and estimate prostate cancer aggressiveness.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. • Akin-Akintayo OO, Jani AB, Odewole O, Tade FI, Nieh PT, Master VA, et al. Change in salvage radiotherapy management based on guidance with FACBC (fluciclovine) PET/CT in postprostatectomy recurrent prostate cancer. Clin Nucl Med. 2017;42(1):e22–e8. https://doi.org/10.1097/RLU.0000000000001379In a prospective randomized trial of 42 post-prostatectomy patients who obtained fluciclovine PET-CT, 34 (81.0%) received positive results of PCa recurrence. All 42 study participants were initially planned for radiotherapy but overall radiotherapy decisions changed in 17 (40.85%) of the 42 patients. Also, fluciclovine PET-CT was shown to perform better than similar studies utilizing 11C-choline PET-CT.

    PubMed  PubMed Central  Article  Google Scholar 

  56. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine ((18)F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol. 2017;197(3 Pt 1):676–83. https://doi.org/10.1016/j.juro.2016.09.117.

    PubMed  Article  Google Scholar 

  57. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43(9):1601–10. https://doi.org/10.1007/s00259-016-3329-1.

    CAS  PubMed  Article  Google Scholar 

  58. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, et al. Recurrent prostate cancer detection with anti-3-[(18)F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging. 2016;43(10):1773–83. https://doi.org/10.1007/s00259-016-3383-8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. •• Savir-Baruch B, Lovrec P, Solanki AA, Adams WH, Yonover PM, Gupta G, et al. Fluorine-18-labeled fluciclovine PET/CT in clinical practice: factors affecting the rate of detection of recurrent prostate cancer. AJR Am J Roentgenol. 2019;213(4):851–8. https://doi.org/10.2214/AJR.19.21153A retrospective study of 152 patients with recurrent PCa after primary treatment reported high fluciclovine PET/CT positivity rate of prostate and extraprostatic recurrence correlated with increased PSA levels.

    PubMed  Article  Google Scholar 

  60. Selnaes KM, Kruger-Stokke B, Elschot M, Willoch F, Storkersen O, Sandsmark E, et al. (18)F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients. Eur Radiol. 2018;28(8):3151–9. https://doi.org/10.1007/s00330-017-5213-1.

    PubMed  Article  Google Scholar 

  61. •• Pernthaler B, Kvaternik H, Aigner RM. A prospective head-to-head comparison of 18F-fluciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate cancer in PET/CT: a special aspect in imaging local recurrence: reply. Clin Nucl Med. 2020. https://doi.org/10.1097/RLU.0000000000002913This prospective study provides a direct comparison between PET-CT tracers 18F-fluciclovine vs. 68Ga-PSMA-11 with BCR. 18F-Fluciclovine PET-CT performed better than 68Ga-PSMA-11 PET-CT in detecting local recurrence (37.9% and 27.6%, respectively, p = 0.03).

  62. Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52(4):637–40. https://doi.org/10.1016/s0090-4295(98)00278-7.

    CAS  PubMed  Article  Google Scholar 

  63. Wright GL Jr, Haley C, Beckett ML, Schellhammer PF. Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1995;1(1):18–28. https://doi.org/10.1016/1078-1439(95)00002-y.

    PubMed  Article  Google Scholar 

  64. Prasad V, Steffen IG, Diederichs G, Makowski MR, Wust P, Brenner W. Biodistribution of [(68)Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol. 2016;18(3):428–36. https://doi.org/10.1007/s11307-016-0945-x.

    CAS  PubMed  Article  Google Scholar 

  65. Walker SM, Lim I, Lindenberg L, Mena E, Choyke PL, Turkbey B. Positron emission tomography (PET) radiotracers for prostate cancer imaging. Abdom Radiol (NY). 2020;45:2165–75. https://doi.org/10.1007/s00261-020-02427-4.

    Article  Google Scholar 

  66. De Visschere PJL, Standaert C, Futterer JJ, Villeirs GM, Panebianco V, Walz J, et al. A systematic review on the role of imaging in early recurrent prostate cancer. Eur Urol Oncol. 2019;2(1):47–76. https://doi.org/10.1016/j.euo.2018.09.010.

    PubMed  Article  Google Scholar 

  67. • Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2020;77(4):403–17. https://doi.org/10.1016/j.eururo.2019.01.049In a meta-analysis of 37 studies, 68Ga-PSMA PET showed evidence of superior sensitivity and specificity compared to alternate techniques, especially with the detection of metastases with biochemical recurrence in patients with low PSA levels.

    PubMed  Article  Google Scholar 

  68. Herlemann A, Wenter V, Kretschmer A, Thierfelder KM, Bartenstein P, Faber C, et al. (68)Ga-PSMA positron emission tomography/computed tomography provides accurate staging of lymph node regions prior to lymph node dissection in patients with prostate cancer. Eur Urol. 2016;70(4):553–7. https://doi.org/10.1016/j.eururo.2015.12.051.

    CAS  PubMed  Article  Google Scholar 

  69. Jilg CA, Drendel V, Rischke HC, Beck T, Vach W, Schaal K, et al. Diagnostic accuracy of Ga-68-HBED-CC-PSMA-ligand-PET/CT before salvage lymph node dissection for recurrent prostate cancer. Theranostics. 2017;7(6):1770–80. https://doi.org/10.7150/thno.18421.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Mandel P, Tilki D, Chun FK, Pristupa E, Graefen M, Klutmann S, et al. Accuracy of (68)Ga-prostate-specific membrane antigen positron emission tomography for the detection of lymph node metastases before salvage lymphadenectomy. Eur Urol Focus. 2020;6(1):71–3. https://doi.org/10.1016/j.euf.2018.07.025.

    PubMed  Article  Google Scholar 

  71. Pfister D, Porres D, Heidenreich A, Heidegger I, Knuechel R, Steib F, et al. Detection of recurrent prostate cancer lesions before salvage lymphadenectomy is more accurate with (68)Ga-PSMA-HBED-CC than with (18)F-fluoroethylcholine PET/CT. Eur J Nucl Med Mol Imaging. 2016;43(8):1410–7. https://doi.org/10.1007/s00259-016-3366-9.

    PubMed  Article  Google Scholar 

  72. Rauscher I, Maurer T, Beer AJ, Graner FP, Haller B, Weirich G, et al. Value of 68Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J Nucl Med. 2016;57(11):1713–9. https://doi.org/10.2967/jnumed.116.173492.

    CAS  PubMed  Article  Google Scholar 

  73. •• Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. (18)F-Fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019;20(9):1286–94. https://doi.org/10.1016/S1470-2045(19)30415-2This recent prospective study compared 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in detecting recurrent PCa post-prostatectomy. Of the 50 patients, 68Ga-PSMA-11 PET-CT had higher detection rates in comparison to 18F-fluciclovine PET-CT (56% vs. 26%, respectively) especially at low PSA levels. The article also reports higher reader agreement with 68Ga-PSMA-11 PET-CT.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG, et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014a;41(1):11–20. https://doi.org/10.1007/s00259-013-2525-5.

    CAS  PubMed  Article  Google Scholar 

  75. •• Fossati N, Scarcella S, Gandaglia G, Suardi N, Robesti D, Boeri L, et al. Underestimation of PET/CT scan in assessing tumour burden of men with nodal recurrence from prostate cancer: head-to-head comparison of (68)Ga-PSMA and (11)C-choline in a large, multi-institutional series of extended salvage lymph node dissections. J Urol. 2020:101097JU0000000000000800. https://doi.org/10.1097/JU.0000000000000800The large study (n= 641) compared 11C-choline and 68Ga-PSMA PET-CT for patients receiving SLND that have PCa recurrence after primary treatment. The study concludes that in these patients, both PET-CT tracers significantly underestimated tumor burden. Between the two tracers, 68Ga-PSMA PET-CT had a superior detection rate in patients with low PSA levels (≤ 1.5 ng/mL) and lower number of positive spots (≤ 2).

  76. • Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, et al. Comparison of (68)Ga-labelled PSMA-11 and (11)C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(1):92–101. https://doi.org/10.1007/s00259-016-3490-6The article reports 68Ga-PSMA-11 PET had a higher detection rate of prostate cancer metastasis to lymph nodes than 11C-choline PET, especially in patients with a PSA level of less than 1 ng/mL. The study did not see a statistically significant difference in detection rates at higher PSA levels.

    CAS  PubMed  Article  Google Scholar 

  77. Luiting HB, van Leeuwen PJ, Busstra MB, Brabander T, van der Poel HG, Donswijk ML, et al. Use of gallium-68 prostate-specific membrane antigen positron-emission tomography for detecting lymph node metastases in primary and recurrent prostate cancer and location of recurrence after radical prostatectomy: an overview of the current literature. BJU Int. 2020;125(2):206–14. https://doi.org/10.1111/bju.14944.

    CAS  PubMed  Article  Google Scholar 

  78. Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schafers M, Bogemann M, et al. Diagnostic performance of (18)F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(12):2055–61. https://doi.org/10.1007/s00259-018-4089-x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. •• Rousseau E, Wilson D, Lacroix-Poisson F, Krauze A, Chi K, Gleave M, et al. A prospective study on (18)F-DCFPyL PSMA PET/CT imaging in biochemical recurrence of prostate cancer. J Nucl Med. 2019;60(11):1587–93. https://doi.org/10.2967/jnumed.119.226381The article reports the potential utility of 18F-DCFPyL PET-CT. In a prospective study of 130 patients with PCa with BCR post-prostatectomy or radiotherapy, 18F-DCFPyL changed disease state in 65.5% of patients and management plans in 87.3%.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Czarniecki M, Mena E, Lindenberg L, Cacko M, Harmon S, Radtke JP, et al. Keeping up with the prostate-specific membrane antigens (PSMAs): an introduction to a new class of positron emission tomography (PET) imaging agents. Transl Androl Urol. 2018;7(5):831–43. https://doi.org/10.21037/tau.2018.08.03.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Werner RA, Derlin T, Lapa C, Sheikbahaei S, Higuchi T, Giesel FL, et al. (18)F-Labeled, PSMA-targeted radiotracers: leveraging the advantages of radiofluorination for prostate cancer molecular imaging. Theranostics. 2020;10(1):1–16. https://doi.org/10.7150/thno.37894.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging. 2014b;41(5):887–97. https://doi.org/10.1007/s00259-013-2660-z.

    CAS  PubMed  Article  Google Scholar 

  83. • Freitag MT, Radtke JP, Afshar-Oromieh A, Roethke MC, Hadaschik BA, Gleave M, et al. Local recurrence of prostate cancer after radical prostatectomy is at risk to be missed in (68)Ga-PSMA-11-PET of PET/CT and PET/MRI: comparison with mpMRI integrated in simultaneous PET/MRI. Eur J Nucl Med Mol Imaging. 2017;44(5):776–87. https://doi.org/10.1007/s00259-016-3594-zThe study demonstrates the use of 68Ga-PSMA-11 PET-MRI to detect local recurrence in 18 patients with BCR after primary treatment. 68Ga-PSMA-11 tracer is rapidly excreted in the urinary tract which can obscure detection of local recurrence due to the close proximity of the bladder. Utilizing 68Ga-PSMA-11-PET-MRI allows for a form of confirmation for initial PET-negative studies.

    CAS  PubMed  Article  Google Scholar 

  84. Souvatzoglou M, Eiber M, Takei T, Furst S, Maurer T, Gaertner F, et al. Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging. 2013;40(10):1486–99. https://doi.org/10.1007/s00259-013-2467-y.

    CAS  PubMed  Article  Google Scholar 

  85. Maurer T, Weirich G, Schottelius M, Weineisen M, Frisch B, Okur A, et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol. 2015;68(3):530–4. https://doi.org/10.1016/j.eururo.2015.04.034.

    PubMed  Article  Google Scholar 

  86. Maurer T, Robu S, Schottelius M, Schwamborn K, Rauscher I, van den Berg NS, et al. (99m)Technetium-based prostate-specific membrane antigen-radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75(4):659–66. https://doi.org/10.1016/j.eururo.2018.03.013.

    PubMed  Article  Google Scholar 

  87. Knipper S, Tilki D, Mansholt J, Berliner C, Bernreuther C, Steuber T, et al. Metastases-yield and prostate-specific antigen kinetics following salvage lymph node dissection for prostate cancer: a comparison between conventional surgical approach and prostate-specific membrane antigen-radioguided surgery. Eur Urol Focus. 2019;5(1):50–3. https://doi.org/10.1016/j.euf.2018.09.014.

    PubMed  Article  Google Scholar 

  88. Yuen K, Miura T, Sakai I, Kiyosue A, Yamashita M. Intraoperative fluorescence imaging for detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy using indocyanine green. J Urol. 2015;194(2):371–7. https://doi.org/10.1016/j.juro.2015.01.008.

    PubMed  Article  Google Scholar 

  89. Ramirez-Backhaus M, Mira Moreno A, Gomez Ferrer A, Calatrava Fons A, Casanova J, Solsona Narbon E, et al. Indocyanine green guided pelvic lymph node dissection: an efficient technique to classify the lymph node status of patients with prostate cancer who underwent radical prostatectomy. J Urol. 2016;196(5):1429–35. https://doi.org/10.1016/j.juro.2016.05.087.

    PubMed  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Bjurlin.

Ethics declarations

Conflict of Interest

Hannah McCloskey, Jesse Jacobs, Ibardo Zambrano, Theodore Moore, Amir Khandani, and Marc Bjurlin each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prostate Cancer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCloskey, H., Jacobs, J., Zambrano, I. et al. Salvage Pelvic Lymph Node Dissection and Current State of Imaging for Recurrent Prostate Cancer: Does a Standard Exist?. Curr Urol Rep 21, 62 (2020). https://doi.org/10.1007/s11934-020-01011-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11934-020-01011-z

Keywords

  • Prostate cancer
  • Biochemical recurrence
  • Lymph node dissection
  • Imaging
  • MRI
  • PET-CT
  • PET-MRI