Skip to main content

Advertisement

Log in

Preventing Lethal Prostate Cancer with Diet, Supplements, and Rx: Heart Healthy Continues to Be Prostate Healthy and “First Do No Harm” Part III

  • Prostate Cancer (S Prasad, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss the overall and latest observations of the effect of diet, lifestyle, supplements, preventive vaccinations, and some prescription heart healthy medications for prostate cancer prevention within a 3-part series of publications.

Recent Findings

The concept of maximizing heart health to prevent aggressive prostate cancer continues to be solidified with additional prospective observational and randomized controlled trial data. Heart healthy is prostate healthy, but heart unhealthy is prostate unhealthy.

Summary

The primary goal for medical providers of reducing all-cause and cardiovascular disease (CVD) morbidity and mortality correlates with maximizing prostate cancer prevention. The obesity epidemic in children and adults along with research from multiple, diverse disciplines has only strengthened the nexus between heart and prostate health. Greater dietary adherence toward a variety of healthy foods is associated with a graded reduction in the probability of CVD and aggressive cancer. Preventing prostate cancer via dietary supplements should encourage a “first do no harm” or less-is-more approach until future evidence can reverse the concerning trend that more supplementation has resulted in either no impact or an increased risk of prostate cancer. Supplements to reduce side effects of some cancer treatments appear to have more encouraging data. A discussion of quality control (QC) before utilizing any pill also requires attention. Medications or interventions that potentially improve heart health including statins, aspirin, and metformin (S.A.M.), specific beta-blocker medications, and even preventive vaccines are in general generic, low cost, “natural,” and should continue to garner research interest. A watershed moment in medical education has arrived where the past perception of a diverse number of trees seemingly separated by vast distances, in reality, now appears to exist within the same forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moyad MA. Preventing lethal prostate cancer with diet, supplements, and Rx: heart healthy continues to be prostate healthy and “first do no harm” part I. Curr Urol Rep. 2018;19:104.

    PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention. Flu vaccination coverage, United States, 2016–2017 influenza season. https://www.cdc.gov/flu/fluvaxview/cove-rage-1617 estimates.htm.

  3. de Gomensoro E, Del Giudice G, Doherty TM. Challenges in adult vaccination. Ann Med. 2018;50:181–92.

    PubMed  Google Scholar 

  4. Musher DM, Abers MS, Corrales-Medina VF. Acute infection and myocardial infarction. N Engl J Med. 2019;380:171–6.

    CAS  PubMed  Google Scholar 

  5. Kwong JC, Schwartz KL, Campitelli MA, Ching H, Crowcroft NS, Karnauchow T, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med. 2018;378:345–53.

    PubMed  Google Scholar 

  6. Peretz A, Azrad M, Blum A. Influenza virus and atherosclerosis. QJM. 2019;112:749–55.

    CAS  PubMed  Google Scholar 

  7. Caldeira D, Rodrigues B, David C, Costa J, Pinto FJ, Ferreira JJ. The association of influenza infection and vaccine with myocardial infarction: systematic review and meta-analysis of self-controlled case series. Expert Rev Vaccines. 2019. https://doi.org/10.1080/14760584.1690459.

  8. Barnes M, Heywood AE, Mahimbo A, Rahman B, Newall AT, Macintyre CR. Acute myocardial infarction and influenza: a meta-analysis of case-control studies. Heart. 2015;101:1738–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fry JS, Hamling JS, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating FEV1 decline to lung cancer risk. BMC Cancer. 2012;12:1–15. https://doi.org/10.1186/1471-2407-12-498.

    Article  Google Scholar 

  10. Wasswa-Kintu S, Gan WQ, Man SF, Pare PD, Sin DD. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax. 2005;60:570–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986;105:503–7.

    CAS  PubMed  Google Scholar 

  12. Chen KY, Wu SM, Liu JC, Lee KY. Effect of annual influenza vaccination on reducing lung cancer in patients with chronic obstructive pulmonary disease from a population-based cohort study. Medicine (Baltimore). 2019;98:47(e18035).

  13. Zhang Y, Luo G, Huang Y, Yu Q, Wang L, Li K. Risk of stroke/transient ischemic attack or myocardial infarction with herpes zoster: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2017;26:1807–16.

    PubMed  Google Scholar 

  14. Forbes HJ, Williamson E, Benjamin L, Breuer J, Brown MM, Langan SM, et al. Association of herpesviruses and stroke: systematic review and meta-analysis. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0206163.

  15. Bakradze E, Kirchoff KF, Antoniello D, Springer MV, Mabie PC, Esenwa CC, et al. Varicella zoster virus vasculitis and adult cerebrovascular disease. Neurohospitalist. 2019;9:203–8.

    PubMed  Google Scholar 

  16. Kong CL, Thompson RR, Porco TC, Kim E, Acharya NR. Incidence rate of herpes zoster ophthalmicus: a retrospective cohort study from 1994 through 2018. Ophthalmology. 2019. https://doi.org/10.1016/j.ophtha.2019.10.001.

  17. Voelker R. Increasing cases of shingles in the eye raises questions. JAMA. 2019;322:712–4.

    Google Scholar 

  18. Klaric JS, Beltran TA, McClenathan BM. An association between herpes zoster vaccination and stroke reduction among elderly individuals. Mil Med. 2019;184(Suppl 1):126–32.

    PubMed  Google Scholar 

  19. Shah RA, Limmer AL, Nwannunu CE, Patel RR, Mui UN, Tyring SK. Shingrix for herpes zoster: a review. Skin Therapy Lett. 2019;24:5–7.

    PubMed  Google Scholar 

  20. Mesci A, Liu SK, Loblaw DA. Spurious elevation of prostate-specific antigen associated with shingles in a prostate cancer patient undergoing active surveillance. Clin Case Rep. 2018;6:2338–40.

    PubMed  PubMed Central  Google Scholar 

  21. Jurhill RR, Van de Veen H, Van Leenders GJ, Verhagen PC. Reduction of serum prostate-specific antigen levels following varicella-zoster infection and valacyclovir treatment in prostate cancer. Eur Urol. 2009;56:392–4.

    CAS  PubMed  Google Scholar 

  22. • Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519:366–9 The serendipitous preliminary finding of a common vaccine’s ability to potentially and profoundly impact immunotherapy treatments for cancer, which should increase the interest of other researchers working in a variety of other cancer fields.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reardon DA, Mitchell DA. The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 2017;39:225–39.

    CAS  PubMed  Google Scholar 

  24. Hoang-Minh LB, Mitchell DA. Immunotherapy for brain tumors. Curr Treat Options Oncol. 2018; doi: 1007/s11864–018–0576-3.

  25. Cetin B, Ozet A. The potential for chemotherapy-free strategies in advanced prostate cancer. Curr Urol. 2019;13:57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ward EM, Flowers CR, Gansler T, Omer SB, Bednarczyk RA. The importance of immunization in cancer prevention, treatment, and survivorship. CA Cancer J Clin. 2017;67:398–410.

    PubMed  Google Scholar 

  27. Lin CL, Kao JH. Review article: the prevention of hepatitis B-related hepatocellular carcinoma. Aliment Pharmacol Ther. 2018;48:5–14.

    PubMed  Google Scholar 

  28. Hung GY, Horng JL, Yen HJ, Lee CY, Lin LY. Changing incidence patterns of hepatocellular carcinoma among age groups in Taiwan. J Hepatol. 2015;63:1390–6.

    PubMed  Google Scholar 

  29. Kao JH. Hepatitis B vaccination and prevention of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol. 2015;29:907–17.

    PubMed  Google Scholar 

  30. Deshmukh AA, Suk R, Shiels MS, Sonawane K, Nyitray AG, Liu Y, et al. Recent trends in squamous cell carcinoma of the anus incidence and mortality in the United States, 2001-2015. J Natl Cancer Inst. 2019. https://doi.org/10.1093/jnci/djz219.

  31. Walker TY, Lam Evans LD, Yankey D, Markowitz LE, Williams CL, Mbaeyi SA, et al. National, regional, state, and selected local area vaccination coverage among adolescents aged 13–17 years-United States, 2017. MMWR Morb Mortal Wkly Rep. 2018;67:909–17.

    PubMed  PubMed Central  Google Scholar 

  32. • Suk R, Montealegre JR, Nemutlu GS, Nyitray AG, Schmeler KM, Sonawane K, et al. Public knowledge of human papillomavirus and receipt of vaccination recommendations. JAMA. 2019. https://doi.org/10.1001/jamapediatrics.2019.3105The lack of awareness of the overall impact of cancer prevention vaccine to prevent multiple cancers is concerning and should be reviewed with the public and patients.

  33. Ren S, Newby D, Li SC, Walkom E, Miller P, Hure A, et al. Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart. 2015;2:e000247. https://doi.org/10.1136/openhrt-2015-000247.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ren S, Hure A, Peel R, D’Este C, Abhayaratna W, Tonkin A, et al. Rationale and design of a randomized controlled trial of pneumococcal polysaccharide vaccine for prevention of cardiovascular events: the Australian Study for the Prevention through Immunization of Cardiovascular Events (AUSPICE). Am Heart J. 2016;177:58–65.

    PubMed  Google Scholar 

  35. Shekarian T, Sivado E, Jallas A-C, Depil S, Kielbassa J, Janoueix-Lerosey I, et al. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci Transl Med. 2019. https://doi.org/10.1126/scitranslmed.aat5025.

  36. Rogers MAM, Basu T, Kim C. Lower incidence rate of type 1 diabetes after receipt of the rotavirus vaccine in the United States, 2001-2017. Sci Rep:2019. https://doi.org/10.1038/s41598-019-44193-4.

  37. Perrett KP, Jachno K, Nolan TM, Harrison LC. Association of rotavirus vaccination with the incidence of type 1 diabetes in children. JAMA Pediatr. 2019;173:280–2.

    PubMed  PubMed Central  Google Scholar 

  38. Ataei-Pirkooh A, Tehrani M, Keyvani H, Esghaei M, Tavakoli A, Nikmanesh B, et al. Rotavirus infection enhances levels of autoantibodies against islet cell antigens GAD65 and IA-2 in children with type 1 diabetes. Fetal Pediatr Pathol. 2019;38:103–11.

    CAS  PubMed  Google Scholar 

  39. Hemming-Harlo M, Lahdeaho ML, Maki M, Vesikari T. Rotavirus vaccination does not increase type 1 diabetes and may decrease celiac disease in children and adolescents. Pediatr Infect Dis J. 2019;38:539–41.

    PubMed  Google Scholar 

  40. • Usher NT, Chang S, Howard RS, Martinez A, Harrison LH, Santosham M, et al. Association of BCG vaccination in childhood with subsequent cancer diagnoses: a 60-year follow-up of a clinical trial. JAMA Netw Open. 2019. https://doi.org/10.1001/jamanetworkopen.2019.12014BCG impact in bladder cancer is profound and novel long-term data on the vaccine suggests there is a potential for BCG to prevent other cancers.

  41. Campbell AH, Guilfoyle P. Pulmonary tuberculosis, isoniazid and cancer. Br J Dis Chest. 1970;64:141–9.

    CAS  PubMed  Google Scholar 

  42. Liang HY, Li XL, Yu XS, Guan P, Yin ZH, He QC, et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer. 2009;125:2936–44.

    CAS  PubMed  Google Scholar 

  43. Hong S, Mok Y, Jeon C, Jee SH, Samet JM. Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int J Cancer. 2016;139:2447–55.

    CAS  PubMed  Google Scholar 

  44. Morra ME, Klen ND, Elmaraezy A, Abdelaziz OAM, Elsayed AL, Halhouli O, et al. Early vaccination protects against childhood leukemia: a systematic review and meta-analysis. Sci Rep. 2017;7(1):15986. https://doi.org/10.1038/s41598-017-16067-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higgins JP, Soares-Weiser K, Lopez-Lopez JA, Kakourou A, Chaplin K, Christensen H, et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ. 2016;355:i5170.

    PubMed  PubMed Central  Google Scholar 

  46. Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol. 2019;103:7903–16.

    CAS  PubMed  Google Scholar 

  47. Kulkarni S, Mukherjee S, Pandey A, Dahake R, Padmanabhan U, Chowdhary AS. Bacillus Calmette-Guerin confers neuroprotection in a murine model of Japanese encephalitis. Nueroimmunomodulation. 2016;23:278–86.

    CAS  Google Scholar 

  48. Zuo Z, Qi F, Yang J, Wang X, Wu Y, Wen Y, et al. Immunization with Bacillus Calmette-Guerin (BCG) alleviates neuroinflammation and cognitive deficits in APP/PS1 mice via the recruitment of inflammation-resolving monocytes to the brain. Neurobiol Dis. 2017;101:27–39.

    CAS  PubMed  Google Scholar 

  49. Gofrit ON, Bercovier H, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL. Can immunization with Bacillus Calmette-Guerin (BCG) protect against Alzheimer’s disease. Med Hypotheses. 2019;123:95–7.

    CAS  PubMed  Google Scholar 

  50. • Gofrit ON, Klein BY, Cohen IR, Ben-Hur T, Greenblatt CL, Bercovier H. Bacillus Calmette-Guerin (BCG) therapy lowers the incidence of Alzheimer’s disease in bladder cancer patients. PLoS One. 2019. https://doi.org/10.1371/journal.pone.0224433Preliminary evidence suggesting BCG secondary benefits could include reducing the risk of cognitive diseases and this could be part of the discussion with patients receiving this therapy for cancer.

  51. Wong GCL, Narang V, Lu Y, Camous X, Nyunt MSZ, Carre C, et al. Hallmarks of improved immunological responses in the vaccination of more physically active elderly females. Exerc Immunol Rev. 2019;25:20–33.

    PubMed  Google Scholar 

  52. Ranadive SM, Cook M, Kappus RM, Yan H, Lane AD, Woods JA, et al. Effect of acute aerobic exercise on vaccine efficacy in older adults. Med Sci Sports Exerc. 2014;46:455–61.

    CAS  PubMed  Google Scholar 

  53. Edwards KM, Burns VE, Allen LM, McPhee JS, Bosch JA, Carroll D, et al. Eccentric exercise as an adjuvant to influenza vaccination in humans. Brain Behav Immun. 2007;21:209–17.

    PubMed  Google Scholar 

  54. • Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin Microbiol Rev. 2019. https://doi.org/10.1128/CMR.00084-18A wonderful, long overdue, comprehensive review, of the multitude of lifestyle factors that could influence the efficacy of common prevention vaccines.

  55. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol. 2018;40:83–94.

    PubMed  Google Scholar 

  56. Coll PP, Costello VW, Kuchel GA, Bartley J, McElhaney JE. The prevention of infections in older adults: vaccination. J Am Geriatr Soc. 2019. https://doi.org/10.1111/jgs.16205.

  57. • Ferro M, Vartolomei MD, Russo GI, Cantiello F, Farhan ARA, Terracciano D, et al. An increased body mass index is associated with worse prognosis in patients administered BCG immunotherapy for T1 bladder cancer. World J Urol. 2019;37:507–14 Cancer immunotherapies in urology could be compromised by some anthropometric measurements and this preliminary research suggests more studies need to address this issue.

    CAS  PubMed  Google Scholar 

  58. Oancea SC, Watson IW. The association between history of screening for cancer and receipt of an annual flu vaccination: are there reinforcing effects of prevention seeking? Am J Infect Control. 2019;47:1309–13.

    PubMed  Google Scholar 

  59. Moyad MA, Vogelzang NJ. Heart healthy equals prostate healthy and statins, aspirin, and/or metformin (S.A.M.) are the ideal recommendations for prostate cancer prevention. Asian J Androl. 2015;17:783–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Moyad MA. Preventing aggressive prostate cancer with proven cardiovascular disease preventive methods. Asian J Androl. 2015;17:874–7.

    PubMed  PubMed Central  Google Scholar 

  61. Vail D, Callaway NF, Ludwig CA, Saroj N, Moshfeghi DM, et al. Lipid-lowering medications are associated with lower risk of retinopathy and ophthalmic interventions among United States patients with diabetes. Am J Ophthalmol. 2019;207:378–84.

    CAS  PubMed  Google Scholar 

  62. FDA. FDA drug safety communication: important safety label changes to cholesterol-lowering statin drugs. https://www.fda.gov/ drugs/drug-safety-and-availability/fda-drug-safety- communication-important-safety-label-changes-cholesterol- lowering-statin-drugs. Published 1/19/2016.

  63. • Chang CF, Liou YS, Lin TK, Ma S, Hu YR, Chen HY, et al. High exposure to statins decrease the risk of new-onset dementia: a nationwide population-based longitudinal study. Medicine (Baltimore). 2019;98(34):e16931. https://doi.org/10.1097/MD.0000000000016931Unfounded negative attention on unproven side effects of statins has arguably compromised compliance, but new data suggests the potential for cholesterol lowering to be cognitively protective, which could initiate a plethora of new clinical trials.

    Article  CAS  Google Scholar 

  64. Kim SW, Kang HJ, Jhon M, Kim JW, Lee JY, Walker AJ, et al. Statins and inflammation: new therapeutic opportunities in psychiatry. Front Psychiatry. 2019. https://doi.org/10.3389/fpsyt.2019.00103.

  65. Strom BL, Schinnar R, Karlawish J, Hennessy S, Teal V, Bilker WB. Statin therapy and risk of acute memory impairment. JAMA Intern Med. 2015;175:1399–405.

    PubMed  PubMed Central  Google Scholar 

  66. Kemp EC, Ebner MK, Ramanan S, Godek TA, Pugh EA, Bartlett HH, et al. Statin use and risk of cognitive decline in the ADNI cohort. Am J Geriatr Psychiatry. 2019. https://doi.org/10.1016/jagp.2019.11.003.

  67. Samaras K, Makkar SR, Crawford JD, Kochan NA, Slavin MJ, Wen W, et al. Effects of statins on memory, cognition, and brain volume in the elderly. J Am Coll Cardiol. 2019;74:2554–68.

    CAS  PubMed  Google Scholar 

  68. Yang Z, Wang H, Edwards D, Ding C, Yan L, Brayne C, et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: a systematic review and meta-analysis. Ageing Res Rev. 2019. https://doi.org/10.1016/j.arr.2019.100962.

  69. Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci (Lond). 2017;131:1059–68.

    Google Scholar 

  70. Chen YA, Lin YJ, Lin CL, Lin HJ, Wu HS, Hsu HY, et al. Simvastatin therapy for drug repositioning to reduce the risk of prostate cancer mortality in patients with hyperlipidemia. Front Pharmacol. 2018. https://doi.org/10.3389/fphar.2018.00225.

  71. Fowke JH, Motley SS. Statin use linked with a decrease in the conversion from high-grade prostatic intraepithelial neoplasia (HGPIN) to prostate cancer. Carcinogenesis. 2018;39:819–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. • Allott EH, Ebot EM, Stopsack KH, Gonzalez-Feliciano AG, Markt SC, Wilson KM, et al. Statin use is associated with lower risk of PTEN-null and lethal prostate cancer. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432This well-known large prospective study could be one more profound step toward a large phase 3 trial of statins to prevent lethal prostate cancer.

  73. Lai SW, Kuo YH, Liao KF. Statins use and prostate cancer mortality. Eur J Cancer. 2019. https://doi.org/10.1016/j.ejca.2019.09.017.

  74. Wang K, Gerke TA, Chen X, Prosperi M. Association of statin use with risk of Gleason score-specific prostate cancer: a hospital-based cohort study. Cancer Med. 2019;8:7399–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Harshman LC, Wang X, Nakabayashi M, Xie W, Valenca L, Werner L, et al. Statin use at the time of initiation of androgen deprivation therapy and time to progression in patients with hormone-sensitive prostate cancer. JAMA Oncol. 2015;1:494–504.

    Google Scholar 

  76. Van Rompay MI, Solomon KR, Nickel JC, Ranganathan G, Kantoff PW, McKinlay JB. Prostate cancer incidence and mortality among men using statins and non-statin lipid-lowering medications. Eur J Cancer. 2019;112:118–26.

    PubMed  PubMed Central  Google Scholar 

  77. McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379:1519–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. •• Joharatnam-Hogan N, Cafferty F, Hubner R, Swinson D, Sothi S, Gupta K, et al. for the Add-Aspirin Trial Management Group. Lancet Gastroenterol Hepatol. 2019;4:854–62 This clinical trial deserves more attention in the USA because it will be one of the only clinical trials in a generation to determine whether or not aspirin impacts prostate cancer and the overall safety of utilizing these dosages in a variety of cancers.

    PubMed  Google Scholar 

  79. Downer MK, Allard CB, Preston MA, Wilson KM, Kenfield SA, Chan JM, et al. Aspirin use and lethal prostate cancer in the Health Professionals Follow-up Study. Eur Urol Oncol. 2019;2:126–34.

    PubMed  Google Scholar 

  80. Downer MK, Allard CB, Preston MA, Gaziano JM, Stampfer MJ, Mucci LA, et al. Regular aspirin use and the risk of lethal prostate cancer in the Physicians’ Health Study. Eur Urol. 2017;72:821–7.

    CAS  PubMed  Google Scholar 

  81. Hurwitz LM, Joshu CE, Barber JR, Prizment AE, Vitolins MZ, Jones MR, et al. Aspirin and non-aspirin NSAID use and prostate cancer incidence, mortality, and case fatality in the Atherosclerosis Risk in Communities Study. Cancer Epidemiol Biomark Prev. 2019;28:563–9.

    Google Scholar 

  82. Sauer CM, Myran DT, Costentin CE, Zwisler G, Safder T, Papatheodorou S, et al. Effect of long term aspirin use on the incidence of prostate cancer: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2018;132:66–75.

    CAS  PubMed  Google Scholar 

  83. Shang Z, Wang X, Yan H, Cui B, Wang Q, Wu J, et al. Intake of non-steroidal anti-inflammatory drugs and risk of prostate cancer: a meta-analysis. Front Oncol. 2018. https://doi.org/10.3389/fonc.2018.00437.

  84. Smith CJ, Dorsey TH, Tang W, Jordan SV, Loffredo CA, Ambs S. Aspirin use reduces the risk of aggressive prostate cancer and disease recurrence in African-American men. Cancer Epidemiol Biomark Prev. 2017;26:845–53.

    CAS  Google Scholar 

  85. • Loomans-Kropp HA, Pinsky P, Cao Y, Chan AT, Umar A. Association of aspirin use with mortality risk among older adult participants in the Prostate, Lung, Colorectal, and Ovarian cancer screening trial. JAMA Netw Open. 2019. https://doi.org/10.1001/jamanetworkopen.2019.16729This trial is best known for initially challenging prostate cancer screening and yet the lifestyle information gleaned from this study, including the use of aspirin, is arguably as profound as any other ancillary findings.

  86. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. on behalf of the Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–403.

  87. Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JSSS, Gandy SJ, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the MET-REMODEL trial. Eur Heart J. 2019;40:3409–17.

    PubMed  PubMed Central  Google Scholar 

  88. He K, Hu H, Ye S, Wang H, Cui R, Yi L. The effect of metformin therapy on incidence and prognosis in prostate cancer: a systematic review and meta-analysis. Sci Rep. 2019;9:1–12. https://doi.org/10.1038/s41598-018-38285-w.

    Article  CAS  Google Scholar 

  89. Krowchuk DP, Frieden IJ, Mancini AJ, Darrow DH, Biel F, Greene AK, et al. Clinical practice guideline for the management of infantile hemangiomas. Pediatrics. 2019. https://doi.org/10.1542/peds.2018-3475.

  90. Chang PY, Huang WY, Lin CL, Huang TC, Wu YY, Chen JH, et al. Propranolol reduces cancer risk: a population-based cohort study. Medicine (Baltimore). 2015. https://doi.org/10.1097/MD.0000000000001097.

  91. Lu H, Liu X, Guo F, Tan S, Wang G, Liu H, et al. Impact of beta-blockers on prostate cancer mortality: a meta-analysis of 16,825 patients. Onco Targets Ther. 2015;8:985–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cao L, Zhang S, Jia CM, He W, Wu LT, Li YQ, et al. Antihypertensive drugs use and the risk of prostate cancer: a meta-analysis of 21 observational studies. BMC Urol. 2018;18:1–14. https://doi.org/10.1186/s12894-018-0318-7.

    Article  CAS  Google Scholar 

  93. Brohee L, Peulen O, Nusgens B, Castronovo V, Thiry M, Colige AC, et al. Propranolol sensitizes prostate cancer cells to glucose metabolism inhibition and prevents cancer progression. Sci Rep. 2018;8:1–14. https://doi.org/10.1038/s41598-018-25340-9.

    Article  CAS  Google Scholar 

  94. De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, et al. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 2018. https://doi.org/10.1001/jamaoncol.2017.2908.

  95. Hiller JG, Cole SW, Crone EM, Byrne DJ, Shackleford DM, Pang JB, et al. Pre-operative beta-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.CCR-19-2641.

  96. Grytii HH, Fagerland MW, Fossa SD, Tasken KA. Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol. 2014;65:635–41.

    Google Scholar 

  97. Lampert R, Burg MM, Jamner LD, Dziura J, Brandt C, Li F, et al. Effect of beta-blockers on triggering of symptomatic atrial fibrillation by anger or stress. Heart Rhythm. 2019;16:1167–73.

    PubMed  Google Scholar 

  98. • Ramondetta LM, Hu W, Thaker PH, Urbauer DL, Chrisholm GB, Westin SN, et al. Prospective pilot trial with combination propranolol with chemotherapy in patients with epithelial ovarian cancer and evaluation on circulating immune cell gene expression. Gynecol Oncol. 2019;154:524–30 If the mental health benefits of some beta-blockers are confirmed during cancer treatment, then these medications could have multiple roles in treatment and quality of life decisions.

    CAS  PubMed  Google Scholar 

  99. Chen D, Ayala GE. Innervating prostate cancer. N Engl J Med. 2018;378:675–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Moyad.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prostate Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moyad, M.A. Preventing Lethal Prostate Cancer with Diet, Supplements, and Rx: Heart Healthy Continues to Be Prostate Healthy and “First Do No Harm” Part III. Curr Urol Rep 21, 22 (2020). https://doi.org/10.1007/s11934-020-00972-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-020-00972-5

Keywords

Navigation