Abstract
Purpose of Review
Epigenetics refers to processes that alter gene expression without altering primary DNA. Over that past decade, there is a growing focus on epigenetic mechanisms in cancer research and its importance in cancer biology. This review summarizes epigenetic dysregulation in bladder cancer.
Recent Findings
Epigenetic alterations are overall shared across various grades and stages of bladder cancer. High grade invasive tumors demonstrate a greater degree and intensity of methylation and may have a unique methylation pattern. Environmental exposures may influence epigenetic alterations directly independent of genomic change. Non-coding RNAs play an important role in cancer phenotype, especially in the context of integrative genomic analyses. DNA hypermethylation and non-coding RNAs have potential as robust bladder cancer biomarkers; however, they require further study and validation. Changes in chromatin and histone modification are attractive targets for therapy and are currently in clinical trials.
Summary
Epigenetic dysregulation may be an important key in improving the understanding of bladder cancer pathogenesis, especially through integrative genomic analyses. Deeper understanding of these pathways can help identify clinically relevant biomarkers and therapeutic targets to validate for diagnosis, monitoring, prognosis, and treatment for bladder cancer.
Similar content being viewed by others
References
Papers of particular interest, published recently, have been highlighted as: •• Of major importance
Tsai H, Baylin S. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res. 2011;21:502–17. https://doi.org/10.1038/cr.2011.24.
Kanwal R, Gupta S. Epigenetic modifications in cancer. Clin Genet. 2012;81:303–11. https://doi.org/10.1111/j.1399-0004.2011.01809.x.
Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. Cancer Epigenetics Risk Assessment, Diagnosis, Treat Progn. 2014. https://doi.org/10.1007/978-1-4939-1804-1_1.
Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet. 2010. https://doi.org/10.1016/B978-0-12-380866-0.60004-6.
Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22:4632–42. https://doi.org/10.1200/JCO.2004.07.151.
•• Hedegaard J, Lamy P, Nordentoft I, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell. 2016. https://doi.org/10.1016/j.ccell.2016.05.004. One of the first integrative analyses of epigenetics and genetic changes in non-invasive and early stage bladder cancer.
•• Hurst CD, Alder O, Platt FM, et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. 2017. https://doi.org/10.1016/j.ccell.2017.08.005. One of the first integrative analyses of epigenetic changes (chromatin modification) and the first to describe a relationship to gender.
•• Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017. https://doi.org/10.1016/j.cell.2017.09.007. Second analysis of TCGA bladder cancer tumors and essential in defining the gold standard genomic landscape in invasive bladder cancer integrating epigenetic and genetic findings.
Sánchez-Carbayo M. Hypermethylation in bladder cancer: biological pathways and translational applications. Tumor Biol. 2012;33:347–61. https://doi.org/10.1007/s13277-011-0310-2.
Agundez M, Grau L, Palou J, Algaba F, Villavicencio H, Sanchez-Carbayo M. Evaluation of the methylation status of tumour suppressor genes for predicting bacillus Calmette-Guérin response in patients with T1G3 high-risk bladder tumours. Eur Urol. 2011;60:131–40. https://doi.org/10.1016/j.eururo.2011.04.020.
Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res. 2011;17:5582–92. https://doi.org/10.1158/1078-0432.CCR-10-2659.
Kandimalla R, Van Tilborg AAG, Kompier LC, Stumpel DJPM, Stam RW, Bangma CH, et al. Genome-wide analysis of CpG Island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol. 2012;61:1245–56. https://doi.org/10.1016/j.eururo.2012.01.011.
Dominguez G, Silva J, Garcia JM, Silva JM, Rodriguez R, Muñoz C, et al. Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutat Res Fundam Mol Mech Mutagen. 2003;530:9–17. https://doi.org/10.1016/S0027-5107(03)00133-7.
Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res. 2007;13:2046–53. https://doi.org/10.1158/1078-0432.CCR-06-2476.
Jarmalaite S, Jankevicius F, Kurgonaite K, Suziedelis K, Mutanen P, Husgafvel-Pursiainen K. Promoter hypermethylation in tumour suppressor genes shows association with stage, grade and invasiveness of bladder cancer. Oncology. 2008;75:145–51. https://doi.org/10.1159/000158665.
Dudziec E, Miah S, Choudhry HMZ, Owen HC, Blizard S, Glover M, et al. Hypermethylation of CpG islands and shores around specific MicroRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res. 2011;17:1287–96. https://doi.org/10.1158/1078-0432.CCR-10-2017.
Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010;70:8169–78. https://doi.org/10.1158/0008-5472.CAN-10-1335.
Dhawan D, Hamdy FC, Rehman I, Patterson J, Cross SS, Feeley KM, et al. Evidence for the early onset of aberrant promoter methylation in urothelial carcinoma. J Pathol. 2006;209:336–43. https://doi.org/10.1002/path.1991.
Catto JWF, Azzouzi AR, Rehman I, Feeley KM, Cross SS, Amira N, et al. Promoter hypermethylation is associated with tumor location, stage, and subsequent progression in transitional cell carcinoma. J Clin Oncol. 2005;23:2903–10. https://doi.org/10.1200/JCO.2005.03.163.
Olkhov-Mitsel E, Savio AJ, Kron KJ, Pethe VV, Hermanns T, Fleshner NE, et al. Epigenome-wide DNA methylation profiling identifies differential methylation biomarkers in high-grade bladder cancer. Transl Oncol. 2017;10:168–77. https://doi.org/10.1016/j.tranon.2017.01.001.
Sacristan R, Gonzalez C, Fernández-Gómez JM, Fresno F, Escaf S, Sánchez-Carbayo M. Molecular classification of non-muscle-invasive bladder cancer (pTa low-grade, pT1 low-grade, and pT1 high-grade subgroups) using methylation of tumor-suppressor genes. J Mol Diagn. 2014;16:564–72. https://doi.org/10.1016/j.jmoldx.2014.04.007.
Ibragimova I, Dulaimi E, Slifker MJ, Chen DY, Uzzo RG, Cairns P. A global profile of gene promoter methylation in treatment-naïve urothelial cancer. Epigenetics. 2014;9:760–73. https://doi.org/10.4161/epi.28078.
Marsit CJ, Houseman EA, Christensen BC, Gagne L, Wrensch MR, Nelson HH, et al. Identification of methylated genes associated with aggressive bladder cancer. PLoS One. 2010;5:e12334. https://doi.org/10.1371/journal.pone.0012334.
Lauss M, Aine M, Sjödahl G, Veerla S, Patschan O, Gudjonsson S, et al. DNA methylation analyses of urothelial carcinoma reveal distinct epigenetic subtypes and an association between gene copy number and methylation status. Epigenetics. 2012;7:858–67. https://doi.org/10.4161/epi.20837.
Schulz WA. L1 retrotransposons in human cancers. J Biomed Biotechnol. 2006;2006:1–12. https://doi.org/10.1155/JBB/2006/83672.
Goodier JL, Kazazian HH. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell. 2008;135:23–35. https://doi.org/10.1016/j.cell.2008.09.022.
Florl AR, Löwer R, Schmitz-Dräger BJ, Schulz WA. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer. 1999;80:1312–21. https://doi.org/10.1038/sj.bjc.6690524.
Kreimer U, Schulz WA, Koch A, Niegisch G, Goering W. HERV-K and LINE-1 DNA methylation and reexpression in urothelial carcinoma. Front Oncol. 2013;3. https://doi.org/10.3389/fonc.2013.00255.
Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 2010;6:e1000917. https://doi.org/10.1371/journal.pgen.1000917.
Friedrich MG, Weisenberger DJ, Cheng JC, Chandrasoma S, Siegmund KD, Gonzalgo ML, et al. Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients. Clin Cancer Res. 2004;10:7457–65. https://doi.org/10.1158/1078-0432.CCR-04-0930.
Casadevall D, Kilian AY, Bellmunt J. The prognostic role of epigenetic dysregulation in bladder cancer: a systematic review. Cancer Treat Rev. 2017;61:82–93. https://doi.org/10.1016/j.ctrv.2017.10.004.
Bosschieter J, Lutz C, Segerink LI, Vis AN, Zwarthoff EC, A van Moorselaar RJ, et al. The diagnostic accuracy of methylation markers in urine for the detection of bladder cancer: a systematic review. Epigenomics. 2018;10:673–87. https://doi.org/10.2217/epi-2017-0156.
Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, et al. Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer. PLoS One. 2015;10:e0137003. https://doi.org/10.1371/journal.pone.0137003.
Kim YJ, Yoon HY, Kim JS, Kang HW, Min BD, Kim SK, et al. HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: array-based DNA methylation and expression profiling. Int J Cancer. 2013;133:1135–42. https://doi.org/10.1002/ijc.28121.
Xylinas E, Hassler MR, Zhuang D, Krzywinski M, Erdem Z, Robinson BD, et al. An epigenomic approach to improving response to neoadjuvant cisplatin chemotherapy in bladder cancer. Biomol Ther. 2016;6. https://doi.org/10.3390/biom6030037.
García-Baquero R, Puerta P, Beltran M, Alvarez-Mújica M, Alvarez-Ossorio JL, Sánchez-Carbayo M. Methylation of tumor suppressor genes in a novel panel predicts clinical outcome in paraffin-embedded bladder tumors. Tumor Biol. 2014;35:5777–86. https://doi.org/10.1007/s13277-014-1767-6.
Toyota M, Ho C, Ohe-Toyota M, Baylin SB, Issa JPJ. Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5’ CpG island in human tumors. Cancer Res. 1999;59(18):4535–41
Beukers W, Kandimalla R, Masius RG, Vermeij M, Kranse R, Van Leenders GJLH, et al. Stratification based on methylation of TBX2 and TBX3 into three molecular grades predicts progression in patients with pTa-bladder cancer. Mod Pathol. 2015;28:515–22. https://doi.org/10.1038/modpathol.2014.145.
Marsit CJ, Karagas MR, Andrew A, Liu M, Danaee H, Schned AR, et al. Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. Cancer Res. 2005;65:7081–5. https://doi.org/10.1158/0008-5472.CAN-05-0267.
Yegin Z, Gunes S, Buyukalpelli R. Hypermethylation of TWIST1 and NID2 in tumor tissues and voided urine in urinary bladder cancer patients. DNA Cell Biol. 2013;32:386–92. https://doi.org/10.1089/dna.2013.2030.
Renard I, Joniau S, van Cleynenbreugel B, Collette C, Naômé C, Vlassenbroeck I, et al. Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples. Eur Urol. 2010;58:96–104. https://doi.org/10.1016/j.eururo.2009.07.041.
Fantony JJ, Abern MR, Gopalakrishna A, Owusu R, Jack Tay K, Lance RS, et al. Multi-institutional external validation of urinary TWIST1 and NID2 methylation as a diagnostic test for bladder cancer. Urol Oncol Semin Orig Investig. 2015;33:387.e1–6. https://doi.org/10.1016/j.urolonc.2015.04.014.
Dahmcke CM, Steven KE, Larsen LK, Poulsen AL, Abdul-Al A, Dahl C, et al. A prospective blinded evaluation of urine-DNA testing for detection of urothelial bladder carcinoma in patients with gross hematuria. Eur Urol. 2016;70:916–9. https://doi.org/10.1016/j.eururo.2016.06.035.
Su SF, De Castro Abreu AL, Chihara Y, Tsai Y, Andreu-Vieyra C, Daneshmand S, et al. A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence. Clin Cancer Res. 2014;20:1978–89. https://doi.org/10.1158/1078-0432.CCR-13-2637.
Feber A, Dhami P, Dong L, de Winter P, Tan WS, Martínez-Fernández M, et al. UroMark—a urinary biomarker assay for the detection of bladder cancer. Clin Epigenetics. 2017;9:8. https://doi.org/10.1186/s13148-016-0303-5.
van Kessel KEM, Beukers W, Lurkin I, Ziel-van der Made A, van der Keur KA, Boormans JL, et al. Validation of a DNA methylation-mutation urine assay to select patients with hematuria for cystoscopy. J Urol. 2017;197:590–5. https://doi.org/10.1016/j.juro.2016.09.118.
Dillon N. Gene regulation and large-scale chromatin organization in the nucleus. Chromosom Res. 2006;14:117–26. https://doi.org/10.1007/s10577-006-1027-8.
Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705. https://doi.org/10.1016/j.cell.2007.02.005.
Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40:741–50. https://doi.org/10.1038/ng.159.
Weikert S, Christoph F, Köllermann J, Müller M, Schrader M, Miller K, et al. Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med. 2005. https://doi.org/10.3892/ijmm.16.2.349.
Vallot C, Stransky N, Bernard-Pierrot I, Hérault A, Zucman-Rossi J, Chapeaublanc E, et al. A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. J Natl Cancer Inst. 2011;103:47–60. https://doi.org/10.1093/jnci/djq470.
Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 2011;43:875–8. https://doi.org/10.1038/ng.907.
Faraj SF, Chaux A, Gonzalez-Roibon N, Munari E, Ellis C, Driscoll T, et al. ARID1A immunohistochemistry improves outcome prediction in invasive urothelial carcinoma of urinary bladder. Hum Pathol. 2014;45:2233–9. https://doi.org/10.1016/j.humpath.2014.07.003.
Balbás-Martínez C, Rodríguez-Pinilla M, Casanova A, Domínguez O, Pisano DG, Gómez G, et al. ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One. 2013;8:e62483. https://doi.org/10.1371/journal.pone.0062483.
Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799–816. https://doi.org/10.1038/nature05874.
Peter S, Borkowska E, Drayton RM, Rakhit CP, Noon A, Chen W, et al. Identification of differentially expressed long noncoding RNAs in bladder cancer. Clin Cancer Res. 2014;20:5311–21. https://doi.org/10.1158/1078-0432.CCR-14-0706.
Quan J, Pan X, Zhao L, Li Z, Dai K, Yan F, et al. LncRNA as a diagnostic and prognostic biomarker in bladder cancer: a systematic review and meta-analysis. Onco Targets Ther. 2018;11:6415–24.
Iliev R, Kleinova R, Juracek J, Dolezel J, Ozanova Z, Fedorko M, et al. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol. 2016;37:13385–90. https://doi.org/10.1007/s13277-016-5177-9.
Tan J, Qiu K, Li M, Liang Y. Double-negative feedback loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett. 2015;589:3175–81. https://doi.org/10.1016/j.febslet.2015.08.020.
Liu Q, Liu H, Cheng H, Li Y, Li X, Zhu C. Downregulation of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. Onco Targets Ther. 2017;10:2461–71. https://doi.org/10.2147/OTT.S124595.
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333:213–21. https://doi.org/10.1016/j.canlet.2013.01.033.
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013;280:1709–16. https://doi.org/10.1111/febs.12185.
Sun X, Du P, Yuan W, Du Z, Yu M, Yu X, et al. Long non-coding RNA HOTAIR regulates cyclin J via inhibition of microRNA-205 expression in bladder cancer. Cell Death Dis. 2015;6:e1907. https://doi.org/10.1038/cddis.2015.269.
Cao Q, Wang N, Qi J, Gu Z, Shen H. Long non-coding RNA-GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C-C motif) ligand 1 expression. Mol Med Rep. 2016;13:27–34. https://doi.org/10.3892/mmr.2015.4503.
Cui X, Jing X, Long C, Yi Q, Tian J, Zhu J. Accuracy of the urine UCA1 for diagnosis of bladder cancer: a meta-analysis. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.16473.
Zhen S, Hua L, Liu Y-H, Sun X-M, Jiang M-M, Chen W, et al. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.14176.
Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol Semin Orig Investig. 2007;25:387–92. https://doi.org/10.1016/j.urolonc.2007.01.019.
Chiyomaru T, Enokida H, Tatarano S, Kawahara K, Uchida Y, Nishiyama K, et al. MiR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br J Cancer. 2010;102:883–91. https://doi.org/10.1038/sj.bjc.6605570.
Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res. 2009;15:5060–72. https://doi.org/10.1158/1078-0432.CCR-08-2245.
Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, et al. A robust methodology to study urine microRNA as tumor marker: MicroRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol Semin Orig Investig. 2010;28:655–61. https://doi.org/10.1016/j.urolonc.2009.01.027.
Guancial EA, Bellmunt J, Yeh S, Rosenberg JE, Berman DM. The evolving understanding of microRNA in bladder cancer. Urol Oncol Semin Orig Investig. 2014;32:41.e31–40. https://doi.org/10.1016/j.urolonc.2013.04.014.
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9. https://doi.org/10.1038/ncb1596.
Chen T, Hevi S, Gay F, Tsujimoto N, He T, Zhang B, et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet. 2007;39:391–6. https://doi.org/10.1038/ng1982.
Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22:480–91. https://doi.org/10.1128/MCB.22.2.480-491.2002.
Duymich CE, Charlet J, Yang X, Jones PA, Liang G. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms11453.
Han H, Wolff EM, Liang G. Epigenetic alterations in bladder cancer and their potential clinical implications. Adv Urol. 2012;2012:1–11. https://doi.org/10.1155/2012/546917.
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–43. https://doi.org/10.1016/j.ccr.2006.04.020.
Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 2009;69:2623–9. https://doi.org/10.1158/0008-5472.CAN-08-3114.
Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A, et al. Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis. 2006;27:112–6. https://doi.org/10.1093/carcin/bgi172.
Michailidi C, Hayashi M, Datta S, Sen T, Zenner K, Oladeru O, et al. Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev Res. 2015;8:208–21. https://doi.org/10.1158/1940-6207.CAPR-14-0251.
Brait M, Munari E, LeBron C, et al. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle. 2013;12:1058–70. https://doi.org/10.4161/cc.24050.
Kelly-Irving M, Mabile L, Grosclaude P, Lang T, Delpierre C. The embodiment of adverse childhood experiences and cancer development: potential biological mechanisms and pathways across the life course. Int J Public Health. 2013;58:3–11. https://doi.org/10.1007/s00038-012-0370-0.
Kitchen MO, Bryan RT, Emes RD, Glossop JR, Luscombe C, Cheng KK, et al. Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer. Epigenetics. 2016;11:237–46. https://doi.org/10.1080/15592294.2016.1154246.
Sanford T, Meng MV, Railkar R, Agarwal PK, Porten SP. Integrative analysis of the epigenetic basis of muscle-invasive urothelial carcinoma. Clin Epigenetics. 2018;10:19. https://doi.org/10.1186/s13148-018-0451-x.
Faleiro I, Leão R, Binnie A, Andrade de Mello R, Maia A-T, Castelo-Branco P. Epigenetic therapy in urologic cancers: an update on clinical trials. Oncotarget. 2015. https://doi.org/10.18632/oncotarget.14226.
Shang D, Liu Y, Matsui Y, Ito N, Nishiyama H, Kamoto T, et al. Demethylating agent 5-Aza-2′-deoxycytidine enhances susceptibility of bladder transitional cell carcinoma to cisplatin. Urology. 2008;71:1220–5. https://doi.org/10.1016/j.urology.2007.11.029.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Sima P. Porten declares no potential conflicts of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
Additional information
This article is part of the Topical Collection on Urothelial Cancer
Rights and permissions
About this article
Cite this article
Porten, S.P. Epigenetic Alterations in Bladder Cancer. Curr Urol Rep 19, 102 (2018). https://doi.org/10.1007/s11934-018-0861-5
Published:
DOI: https://doi.org/10.1007/s11934-018-0861-5