Skip to main content

Environmental Toxins and Male Fertility

Abstract

Purpose of Review

Global industrialization has increased population exposure to environmental toxins. A global decline in sperm quality over the last few decades raises questions about the adverse impact of environmental toxins on male reproductive health.

Recent Findings

Multiple animal- and human-based studies on exposure to environmental toxins suggest a negative impact on semen quality, in terms of sperm concentration, motility, and/or morphology. These toxins may exert estrogenic and/or anti-androgenic effects, which in turn alter the hypothalamic-pituitary-gonadal axis (HPGA), induce sperm DNA damage, or cause sperm epigenetic changes.

Summary

This chapter will discuss the most recent literature about the most common environmental toxins and their impact on spermatogenesis and its consequences on male fertility. Understanding the presence and underlying mechanism of these toxins will help us preserve the integrity of the male reproduction system and formulate better regulations against their indiscriminate use.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646–59.

    Article  PubMed  Google Scholar 

  2. 2.

    Jenardhanan P, Panneerselvam M, Mathur PP. Effect of environmental contaminants on spermatogenesis. Semin Cell Dev Biol. 2016;59:126–40.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect. 1996;104(Suppl 4):715–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Pharmacol. 2015;40(1):241–58.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Krieg SA, Shahine LK, Lathi RB. Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil Steril. 2016;106(4):941–7.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Hauser R, Skakkebaek NE, Hass U, Toppari J, Juul A, Andersson AM, et al. Male reproductive disorders, diseases, and costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab. 2015;100(4):1267–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Attina TM, Hauser R, Sathyanarayana S, Hunt PA, Bourguignon JP, Myers JP, et al. Exposure to endocrine-disrupting chemicals in the USA: a population-based disease burden and cost analysis. Lancet Diabetes Endocrinol. 2016;4(12):996–1003.

    Article  PubMed  Google Scholar 

  8. 8.

    Conka K, et al. Simple solid-phase extraction method for determination of polychlorinated biphenyls and selected organochlorine pesticides in human serum. J Chromatogr A. 2005;1084(1–2):33–8.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56–70.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Jiang LG, Cheng LY, Kong SH, Yang Y, Shen YJ, Chen C, et al. Toxic effects of polychlorinated biphenyls (Aroclor 1254) on human sperm motility. Asian J Androl. 2017;19(5):561–6.

    Article  PubMed  Google Scholar 

  11. 11.

    Mumford SL, Kim S, Chen Z, Gore-Langton RE, Boyd Barr D, Buck Louis GM. Persistent organic pollutants and semen quality: the LIFE study. Chemosphere. 2015;135:427–35.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Petersen MS, Halling J, Weihe P, Jensen TK, Grandjean P, Nielsen F, et al. Spermatogenic capacity in fertile men with elevated exposure to polychlorinated biphenyls. Environ Res. 2015;138:345–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Vitku J, Heracek J, Sosvorova L, Hampl R, Chlupacova T, Hill M, et al. Associations of bisphenol A and polychlorinated biphenyls with spermatogenesis and steroidogenesis in two biological fluids from men attending an infertility clinic. Environ Int. 2016;89-90:166–73.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Yurdakok B, Tekin K, Daskin A, Filazi A. Effects of polychlorinated biphenyls 28, 30 and 118 on bovine spermatozoa in vitro. Reprod Domest Anim. 2015;50(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Sugantha Priya E, Sathish Kumar T, Balaji S, Bavithra S, Raja Singh P, Sakthivel D, et al. Lactational exposure effect of polychlorinated biphenyl on rat Sertoli cell markers and functional regulators in prepuberal and puberal F1 offspring. J Endocrinol Investig. 2017;40(1):91–100.

    Article  CAS  Google Scholar 

  16. 16.

    Fiandanese N, Borromeo V, Berrini A, Fischer B, Schaedlich K, Schmidt JS, et al. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring. Reprod Toxicol. 2016;65:123–32.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Aydin Y, Erkan M. The toxic effects of polychlorinated biphenyl (Aroclor 1242) on Tm3 Leydig cells. Toxicol Ind Health. 2017;33(8):636–45.

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Perry MJ, Young HA, Grandjean P, Halling J, Petersen MS, Martenies SE, et al. Sperm aneuploidy in Faroese men with lifetime exposure to Dichlorodiphenyldichloroethylene (p,p -DDE) and polychlorinated biphenyl (PCB) pollutants. Environ Health Perspect. 2016;124(7):951–6.

    PubMed  CAS  Google Scholar 

  19. 19.

    Hsu P-C, Li MC, Lee YC, Kuo PL, Guo YL. Polychlorinated biphenyls and dibenzofurans increased abnormal sperm morphology without alterations in aneuploidy: the Yucheng study. Chemosphere. 2016;165:294–7.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Goldstone AE, Chen Z, Perry MJ, Kannan K, Louis GMB. Urinary bisphenol A and semen quality, the LIFE Study. Reprod Toxicol. 2015;51:7–13.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Richter CA, Taylor JA, Ruhlen RL, Welshons WV, vom Saal FS. Estradiol and bisphenol a stimulate androgen receptor and estrogen receptor gene expression in fetal mouse prostate mesenchyme cells. Environ Health Perspect. 2007;115(6):902–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Qiu LL, Wang X, Zhang XH, Zhang Z, Gu J, Liu L, et al. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol Lett. 2013;219(2):116–24.

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Wisniewski P, Romano RM, Kizys MML, Oliveira KC, Kasamatsu T, Giannocco G, et al. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology. 2015;329:1–9.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Joensen UN, Main KM, et al. Urinary bisphenol A levels in young men: association with reproductive hormones and semen quality. Environ Health Perspect. 2014;122(5):478–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Liu X, Miao M, Zhou Z, Gao E, Chen J, Wang J, et al. Exposure to bisphenol-A and reproductive hormones among male adults. Environ Toxicol Pharmacol. 2015;39(2):934–41.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Manfo FP, Jubendradass R, Nantia EA, Moundipa PF, Mathur PP. Adverse effects of bisphenol A on male reproductive function. Rev Environ Contam Toxicol. 2014;228:57–82.

    PubMed  CAS  Google Scholar 

  27. 27.

    Dirtu AC, Geens T, Dirinck E, Malarvannan G, Neels H, van Gaal L, et al. Phthalate metabolites in obese individuals undergoing weight loss: urinary levels and estimation of the phthalates daily intake. Environ Int. 2013;59:344–53.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Pant N, Pant AB, Shukla M, Mathur N, Gupta YK, Saxena DK. Environmental and experimental exposure of phthalate esters: the toxicological consequence on human sperm. Hum Exp Toxicol. 2011;30(6):507–14.

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Prevention, C.f.D.C.a. Second National Report on Human Exposure to Environmental Chemicals. NCEH publication 02–0716. National Center for Environmental Health [report] 2003. February 4, 2003.

  30. 30.

    Cai H, Zheng W, Zheng P, Wang S, Tan H, He G, et al. Human urinary/seminal phthalates or their metabolite levels and semen quality: a meta-analysis. Environ Res. 2015;142:486–94.

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Wang YX, Zeng Q, Sun Y, You L, Wang P, Li M, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: a cross-sectional study in China. Environ Res. 2016;150:557–65.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Watkins DJ, Sánchez BN, Téllez-Rojo MM, Lee JM, Mercado-García A, Blank-Goldenberg C, et al. Impact of phthalate and BPA exposure during in utero windows of susceptibility on reproductive hormones and sexual maturation in peripubertal males. Environ Health. 2017;16:69.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Dobrzynska MM. Phthalates—widespread occurrence and the effect on male gametes. Part 2. The effects of phthalates on male gametes and on the offspring. Rocz Panstw Zakl Hig. 2016;67(3):209–21.

    PubMed  CAS  Google Scholar 

  34. 34.

    Ahmad R, Gautam AK, Verma Y, Sedha S, Kumar S. Effects of in utero di-butyl phthalate and butyl benzyl phthalate exposure on offspring development and male reproduction of rat. Environ Sci Pollut Res. 2014;21(4):3156–65.

    Article  CAS  Google Scholar 

  35. 35.

    Hsu PC, Kuo YT, Leon Guo Y, Chen JR, Tsai SS, Chao HR, et al. The adverse effects of low-dose exposure to Di(2-ethylhexyl) phthalate during adolescence on sperm function in adult rats. Environ Toxicol. 2016;31(6):706–12.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Svechnikov K, Savchuk I, Morvan ML, Antignac JP, le Bizec B, Söder O. Phthalates exert multiple effects on Leydig cell steroidogenesis. Horm Res Paediatr. 2016;86(4):253–63.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Thurston SW, Mendiola J, Bellamy AR, Levine H, Wang C, Sparks A, et al. Phthalate exposure and semen quality in fertile US men. Andrology. 2016;4(4):632–8.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Specht IO, Toft G, Hougaard KS, Lindh CH, Lenters V, Jönsson BAG, et al. Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ Int. 2014;66:146–56.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Jurewicz J, Radwan M, Sobala W, Ligocka D, Radwan P, Bochenek M, et al. Human urinary phthalate metabolites level and main semen parameters, sperm chromatin structure, sperm aneuploidy and reproductive hormones. Reprod Toxicol. 2013;42:232–41.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Chen Q, Yang H, Zhou N, Sun L, Bao H, Tan L, et al. Phthalate exposure, even below US EPA reference doses, was associated with semen quality and reproductive hormones: prospective MARHCS study in general population. Environ Int. 2017;104:58–68.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Nassan FL, Coull BA, Skakkebaek NE, Andersson AM, Williams MA, Mínguez-Alarcón L, et al. A crossover-crossback prospective study of dibutyl-phthalate exposure from mesalamine medications and serum reproductive hormones in men. Environ Res. 2018;160:121–31.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol. 2017;91(2):549–99.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O. Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology. 2013;307:136–45.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Yolanda Pico, G.f.a.J.m., Handbook of Food Analysis, Organophosphate Pesticides Residues in Food. 2nd edn, vol. 2. 2004, New York, USA.

  45. 45.

    Bjørling-Poulsen M, Andersen HR, Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ Health. 2008;7:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health. 2011;8(6):2265–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Mehrpour O, Karrari P, Zamani N, Tsatsakis AM, Abdollahi M. Occupational exposure to pesticides and consequences on male semen and fertility: a review. Toxicol Lett. 2014;230(2):146–56.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Miranda-Contreras L, Gómez-Pérez R, Rojas G, Cruz I, Berrueta L, Salmen S, et al. Occupational exposure to organophosphate and carbamate pesticides affects sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers. J Occup Health. 2013;55(3):195–203.

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Melgarejo M, Mendiola J, Koch HM, Moñino-García M, Noguera-Velasco JA, Torres-Cantero AM. Associations between urinary organophosphate pesticide metabolite levels and reproductive parameters in men from an infertility clinic. Environ Res. 2015;137:292–8.

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Cremonese C, Piccoli C, Pasqualotto F, Clapauch R, Koifman RJ, Koifman S, et al. Occupational exposure to pesticides, reproductive hormone levels and sperm quality in young Brazilian men. Reprod Toxicol. 2017;67:174–85.

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    ATSDR. Toxic Substances and Disease Registry. Toxicological Profile for DDT, DDE, and DDD. Atlanta: Agency for Toxic Substances and Disease Registr; 2002.

    Google Scholar 

  52. 52.

    Consales C, Toft G, Leter G, Bonde JPE, Uccelli R, Pacchierotti F, et al. Exposure to persistent organic pollutants and sperm DNA methylation changes in Arctic and European populations. Environ Mol Mutagen. 2016;57(3):200–9.

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Campagna M, Satta G, Fadda D, Pili S, Cocco P. Male fertility following occupational exposure to dichlorodiphenyltrichloroethane (DDT). Environ Int. 2015;77:42–7.

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Pant N, Shukla M, Upadhyay AD, Chaturvedi PK, Saxena DK, Gupta YK. Association between environmental exposure to p, p’-DDE and lindane and semen quality. Environ Sci Pollut Res Int. 2014;21(18):11009–16.

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Rana SVS. Perspectives in endocrine toxicity of heavy metals—a review. Biol Trace Elem Res. 2014;160(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Carette D, Perrard MH, Prisant N, Gilleron J, Pointis G, Segretain D, et al. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model. Toxicol Appl Pharmacol. 2013;268(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  57. 57.

    de Angelis C, Galdiero M, Pivonello C, Salzano C, Gianfrilli D, Piscitelli P, et al. The environment and male reproduction: the effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol. 2017;73:105–27.

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Lemjabbar-Alaoui H, Hassan OUI, Yang YW, Buchanan P. Lung cancer: biology and treatment options. Biochim Biophys Acta Rev Cancer. 2015;1856(2):189–210.

    Article  CAS  Google Scholar 

  60. 60.

    Loomis D, Grosse Y, Lauby-Secretan B, el Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013;14(13):1262–3.

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Lafuente R, García-Blàquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril. 2016;106(4):880–96.

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Radwan M, et al. Air Pollution and Human Sperm Sex Ratio. Am J Men’s Health. 0(0):1557988317752608.

  63. 63.

    Zhang M-H, Shi ZD, Yu JC, Zhang YP, Wang LG, Qiu Y. Scrotal heat stress causes sperm chromatin damage and cysteinyl aspartate-spicific proteinases 3 changes in fertile men. J Assist Reprod Genet. 2015;32(5):747–55.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Garolla A, Torino M, Sartini B, Cosci I, Patassini C, Carraro U, et al. Seminal and molecular evidence that sauna exposure affects human spermatogenesis. Hum Reprod. 2013;28(4):877–85.

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Liu Y, Li X. Molecular basis of cryptorchidism-induced infertility. Sci China Life Sci. 2010;53(11):1274–83.

    Article  PubMed  CAS  Google Scholar 

  66. 66.

    Garolla A, Torino M, Miola P, Caretta N, Pizzol D, Menegazzo M, et al. Twenty-four-hour monitoring of scrotal temperature in obese men and men with a varicocele as a mirror of spermatogenic function. Hum Reprod. 2015;30(5):1006–13.

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Kim J-H, Park SJ, Kim TS, Kim JM, Lee DS. Testosterone production by a Leydig tumor cell line is suppressed by hyperthermia-induced endoplasmic reticulum stress in mice. Life Sci. 2016;146:184–91.

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Lin C, et al. Enhanced Protective Effects of Combined Treatment with β-Carotene and Curcumin against Hyperthermic Spermatogenic Disorders in Mice. BioMed Res Int. 2016;2016:2572073.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Zhang M-H, Zhang AD, Shi ZD, Wang LG, Qiu Y. Changes in levels of seminal nitric oxide synthase, macrophage migration inhibitory factor, sperm DNA integrity and caspase-3 in fertile men after scrotal heat stress. PLoS One. 2015;10(10):e0141320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Rao M, Xia W, Yang J, Hu LX, Hu SF, Lei H, et al. Transient scrotal hyperthermia affects human sperm DNA integrity, sperm apoptosis, and sperm protein expression. Andrology. 2016;4(6):1054–63.

    Article  PubMed  CAS  Google Scholar 

  71. 71.

    Kesari KK, Kumar S, Nirala J, Siddiqui MH, Behari J. Biophysical evaluation of radiofrequency electromagnetic field effects on male reproductive pattern. Cell Biochem Biophys. 2013;65(2):85–96.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Elmas O. Effects of electromagnetic field exposure on the heart: a systematic review. Toxicol Ind Health. 2016;32(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Morgan LL, et al. Mobile phone radiation causes brain tumors and should be classified as a probable human carcinogen (2A) (Review). Vol. 46. 2015.

  74. 74.

    Oftedal G, Wilen J, Sandstrom M, Mild KH. Symptoms experienced in connection with mobile phone use. Occup Med. 2000;50(4):237–45.

    Article  CAS  Google Scholar 

  75. 75.

    Braune S, Wrocklage C, Raczek J, Gailus T, Lücking CH. Resting blood pressure increase during exposure to a radio-frequency electromagnetic field. Lancet. 1998;351(9119):1857–8.

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    Danker-Hopfe H, Dorn H, Bolz T, Peter A, Hansen ML, Eggert T, et al. Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: an intra- and inter-individual perspective. Environ Res. 2016;145:50–60.

    Article  PubMed  CAS  Google Scholar 

  77. 77.

    Ghanbari M, Mortazavi SB, Khavanin A, Khazaei M. The effects of cell phone waves (900 MHz-GSM band) on sperm parameters and total antioxidant capacity in rats. Int J Fertil Steril. 2013;7(1):21–8.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Kumar S, et al. Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. 2014;52:890–7.

  79. 79.

    Pandey N, Giri S, Das S, Upadhaya P. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice. Toxicol Ind Health. 2017;33(4):373–84.

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int. 2014;70:106–12.

    Article  PubMed  Google Scholar 

  81. 81.

    Liu K, Li Y, Zhang G, Liu J, Cao J, Ao L, et al. Association between mobile phone use and semen quality: a systemic review and meta-analysis. Andrology. 2014;2(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  82. 82.

    Zhang G, Yan H, Chen Q, Liu K, Ling X, Sun L, et al. Effects of cell phone use on semen parameters: results from the MARHCS cohort study in Chongqing, China. Environ Int. 2016;91:116–21.

    Article  PubMed  Google Scholar 

  83. 83.

    Sheynkin Y, Jung M, Yoo P, Schulsinger D, Komaroff E. Increase in scrotal temperature in laptop computer users. Hum Reprod. 2005;20(2):452–5.

    Article  PubMed  Google Scholar 

  84. 84.

    Sheynkin Y, et al. Protection from scrotal hyperthermia in laptop computer users. 2010;95:647–51.

  85. 85.

    McGill JJ, Agarwal A. The impact of cell phone, laptop computer, and microwave oven usage on male fertility. In: du Plessis SS, Agarwal A, Sabanegh JES, editors. Male Infertility: A Complete Guide to Lifestyle and Environmental Factors. New York: Springer New York; 2014. p. 161–77.

    Google Scholar 

  86. 86.

    Dasdag S, Taş M, Akdag MZ, Yegin K. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 2015;34(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  87. 87.

    Shokri S, et al. Effects of Wi-Fi (2.45 GHz) exposure on apoptosis, sperm parameters and testicular histomorphometry in rats: a time course study. Cell J (Yakhteh). 2015;17(2):322–31.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samuel Ohlander.

Ethics declarations

Conflict of Interest

Mahmoud Mima, David Greenwald, and Samuel Ohlander each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Andrology and Infertility

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mima, M., Greenwald, D. & Ohlander, S. Environmental Toxins and Male Fertility. Curr Urol Rep 19, 50 (2018). https://doi.org/10.1007/s11934-018-0804-1

Download citation

Keywords

  • Environment
  • Environmental toxins
  • Male infertility
  • Sperm
  • Endocrine disrupting chemicals
  • Thermotoxicity