Predicting and Modifying Risk for Development of Renal Failure in Boys with Posterior Urethral Valves

  • Christopher J Long
  • Diana K Bowen
Pediatric Urology (D Weiss, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Urology


Purpose of Review

The purpose of this review is to bring the reader up to date on the current risk factors for the development of renal deterioration in the boys with posterior urethral valves (PUV) and approaches to modify this risk.

Recent Findings

Renal bladder ultrasound (RBUS) is routinely performed in boys with PUV and recent advancements allow imaging processing that can more accurately quantify renal parenchyma and correlate this with risk for renal loss. Refinement of urine studies may improve our ability to stratify patients into renal loss categories. Use of videourodynamics (VUDS) allows refined assessment of the valve bladder to identify those who might benefit from secondary procedures and/or the addition of targeted pharmacotherapy to improve bladder emptying or dangerous storage pressures.


All boys with a history of PUV are at a significant long-term risk of renal deterioration. The literature suggests that several technical advances have improved our ability to predict this risk, although there needs to be further refinement and validation before widespread use. Utilization of close follow-up, VUDS, pharmacotherapy, and bladder drainage provide the best methods to improve care to this group of patients and if more studies confirm their utility, adoption of these as part of standard of care protocols may be warranted.


Posterior urethral valves Renal insufficiency Anticholinergic Ultrasound 



Posterior urethral valves


Lower urinary tract obstruction


Renal bladder ultrasound


Renal parenchymal area


End-stage renal disease


Chronic kidney disease


Bladder neck


Angiotensin-converting enzyme-inhibitors


Corticomedullary differentiation


Vesicoureteral reflux


Voiding cystourethrography


Compliance with Ethical Standards

Conflict of Interest

Christopher J. Long and Diana K. Bowen each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lissauer D, Morris RK, Kilby MD. Fetal lower urinary tract obstruction. Semin Fetal Neonatal Med. 2007;12(6):464–70.CrossRefPubMedGoogle Scholar
  2. 2.
    •• Heikkila J, Holmberg C, Kyllonen L, Rintala R, Taskinen S. Long-term risk of end stage renal disease in patients with posterior urethral valves. J Urol. 2011;186(6):2392–6. This paper highlights risk factors for long-term renal loss in patients with PUV. CrossRefPubMedGoogle Scholar
  3. 3.
    Holmdahl G, Sillen U. Boys with posterior urethral valves: outcome concerning renal function, bladder function and paternity at ages 31 to 44 years. J Urol. 2005;174(3):1031–4. discussion 4CrossRefPubMedGoogle Scholar
  4. 4.
    Ethun CG, Zamora IJ, Roth DR, Kale A, Cisek L, Belfort MA, et al. Outcomes of fetuses with lower urinary tract obstruction treated with vesicoamniotic shunt: a single-institution experience. J Pediatr Surg. 2013;48(5):956–62.CrossRefPubMedGoogle Scholar
  5. 5.
    • Farrugia MK. Fetal bladder outlet obstruction: embryopathology, in utero intervention and outcome. J Pediatr Urol. 2016;12(5):296–303. This review article discusses the impact of fetal intervention in boys with concerns for LUTO. CrossRefPubMedGoogle Scholar
  6. 6.
    Smith-Harrison LI, Hougen HY, Timberlake MD, Corbett ST. Current applications of in utero intervention for lower urinary tract obstruction. J Pediatr Urol. 2015;11(6):341–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Morris RK, Malin GL, Quinlan-Jones E, Middleton LJ, Hemming K, Burke D, et al. Percutaneous vesicoamniotic shunting versus conservative management for fetal lower urinary tract obstruction (PLUTO): a randomised trial. Lancet. 2013;382(9903):1496–506.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    • Glassberg KI. The valve bladder syndrome: 20 years later. J Urol. 2001;166(5):1406–14. This was a great review highlighting the history of the valve bladder and some of the arguments for and against its development. PubMedGoogle Scholar
  9. 9.
    Morris RK, Quinlan-Jones E, Kilby MD, Khan KS. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat Diagn. 2007;27(10):900–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Klein J, Lacroix C, Caubet C, Siwy J, Zurbig P, Dakna M, et al. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci Transl Med. 2013;5(198):198ra06.CrossRefGoogle Scholar
  11. 11.
    Decramer S, Wittke S, Mischak H, Zurbig P, Walden M, Bouissou F, et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat Med. 2006;12(4):398–400.CrossRefPubMedGoogle Scholar
  12. 12.
    Drozdz D, Drozdz M, Gretz N, Mohring K, Mehls O, Scharer K. Progression to end-stage renal disease in children with posterior urethral valves. Pediatr Nephrol. 1998;12(8):630–6.CrossRefPubMedGoogle Scholar
  13. 13.
    DeFoor W, Clark C, Jackson E, Reddy P, Minevich E, Sheldon C. Risk factors for end stage renal disease in children with posterior urethral valves. J Urol. 2008;180(4 Suppl):1705–8. discussion 8CrossRefPubMedGoogle Scholar
  14. 14.
    Coleman R, King T, Nicoara CD, Bader M, McCarthy L, Chandran H, et al. Nadir creatinine in posterior urethral valves: how high is low enough? J Pediatr Urol. 2015;11(6):356 e1–5.CrossRefGoogle Scholar
  15. 15.
    Coleman R, King T, Nicoara CD, Bader M, McCarthy L, Chandran H, et al. Combined creatinine velocity and nadir creatinine: a reliable predictor of renal outcome in neonatally diagnosed posterior urethral valves. J Pediatr Urol. 2015;11(4):214 e1–3.CrossRefGoogle Scholar
  16. 16.
    Sarhan OM. Posterior urethral valves: impact of low birth weight and preterm delivery on the final renal outcome. Arab J Urol. 2017;15(2):159–65.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shirazi M, Farsiani M, Natami M, Izadpanah K, Malekahmadi A, Khakbaz A. Which patients are at higher risk for residual valves after posterior urethral valve ablation? Korean J Urol. 2014;55(1):64–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    • Pohl M, Mentzel HJ, Vogt S, Walther M, Ronnefarth G, John U. Risk factors for renal insufficiency in children with urethral valves. Pediatr Nephrol. 2012;27(3):443–50. This group assesses many risk factors for renal loss in boys with PUV. CrossRefPubMedGoogle Scholar
  19. 19.
    El-Sherbiny MT, Hafez AT, Shokeir AA. Posterior urethral valves: does young age at diagnosis correlate with poor renal function? Urology. 2002;60(2):335–8. discussion 8CrossRefPubMedGoogle Scholar
  20. 20.
    Ziylan O, Oktar T, Ander H, Korgali E, Rodoplu H, Kocak T. The impact of late presentation of posterior urethral valves on bladder and renal function. J Urol. 2006;175(5):1894–7. discussion 7CrossRefPubMedGoogle Scholar
  21. 21.
    Engel DL, JCt P, Adams MC, Brock JW 3rd, Thomas JC, Tanaka ST. Risk factors associated with chronic kidney disease in patients with posterior urethral valves without prenatal hydronephrosis. J Urol. 2011;185(6 Suppl):2502–6.CrossRefPubMedGoogle Scholar
  22. 22.
    •• Sarhan OM, El-Ghoneimi AA, Helmy TE, Dawaba MS, Ghali AM, el HI I. Posterior urethral valves: multivariate analysis of factors affecting the final renal outcome. J Urol. 2011;185(6 Suppl):2491–5. This multivariate analysis highlights many of the possible etiologies of renal loss in PUV. CrossRefPubMedGoogle Scholar
  23. 23.
    Oliveira EA, Rabelo EA, Pereira AK, Diniz JS, Cabral AC, Leite HV, et al. Prognostic factors in prenatally-detected posterior urethral valves: a multivariate analysis. Pediatr Surg Int. 2002;18(8):662–7.PubMedGoogle Scholar
  24. 24.
    Ansari MS, Gulia A, Srivastava A, Kapoor R. Risk factors for progression to end-stage renal disease in children with posterior urethral valves. J Pediatr Urol. 2010;6(3):261–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Cost GA, Merguerian PA, Cheerasarn SP, Shortliffe LM. Sonographic renal parenchymal and pelvicaliceal areas: new quantitative parameters for renal sonographic followup. J Urol. 1996;156(2 Pt 2):725–9.PubMedGoogle Scholar
  26. 26.
    Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE. Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol. 2014;9(3):499–505.CrossRefPubMedGoogle Scholar
  27. 27.
    Fischer K, Li C, Wang H, Song Y, Furth S, Tasian GE. Renal parenchymal area growth curves for children 0 to 10 months old. J Urol. 2016;195(4 Pt 2):1203–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hulbert WC, Rosenberg HK, Cartwright PC, Duckett JW, Snyder HM. The predictive value of ultrasonography in evaluation of infants with posterior urethral valves. J Urol. 1992;148(1):122–4.CrossRefPubMedGoogle Scholar
  29. 29.
    Duel BP, Mogbo K, Barthold JS, Gonzalez R. Prognostic value of initial renal ultrasound in patients with posterior urethral valves. J Urol. 1998;160(3 Pt 2):1198–200. discussion 216CrossRefPubMedGoogle Scholar
  30. 30.
    do Nascimento JH, Soder RB, Epifanio M, Baldisserotto M. Accuracy of computer-aided ultrasound as compared with magnetic resonance imaging in the evaluation of nonalcoholic fatty liver disease in obese and eutrophic adolescents. Radiol Bras. 2015;48(4):225–32.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    •• Odeh R, Noone D, Bowlin PR, Braga LH, Lorenzo AJ. Predicting risk of chronic kidney disease in infants and young children at diagnosis of posterior urethral valves: initial ultrasound kidney characteristics and validation of parenchymal area as forecasters of renal reserve. J Urol. 2016;196(3):862–8. This group describes their experience with readily available technology to improve diagnostic prognosis of RBUS in boys with PUV. CrossRefPubMedGoogle Scholar
  33. 33.
    Oktar T, Salabas E, Acar O, Atar A, Nane I, Ander H, et al. Residual valve and stricture after posterior urethral valve ablation: how to evaluate? J Pediatr Urol. 2013;9(2):184–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Misseri R, Combs AJ, Horowitz M, Donohoe JM, Glassberg KI. Myogenic failure in posterior urethral valve disease: real or imagined? J Urol. 2002;168(4 Pt 2):1844–8. discussion 8CrossRefPubMedGoogle Scholar
  35. 35.
    Donohoe JM, Weinstein RP, Combs AJ, Misseri R, Horowitz M, Schulsinger D, et al. When can persistent hydroureteronephrosis in posterior urethral valve disease be considered residual stretching? J Urol. 2004;172(2):706–11. discussion 11CrossRefPubMedGoogle Scholar
  36. 36.
    Androulakakis PA, Karamanolakis DK, Tsahouridis G, Stefanidis AA, Palaeodimos I. Myogenic bladder decompensation in boys with a history of posterior urethral valves is caused by secondary bladder neck obstruction? BJU Int. 2005;96(1):140–3.CrossRefPubMedGoogle Scholar
  37. 37.
    Mokhless I, Zahran AR, Saad A, Yehia M, Youssif ME. Effect of Botox injection at the bladder neck in boys with bladder dysfunction after valve ablation. J Pediatr Urol. 2014;10(5):899–904.CrossRefPubMedGoogle Scholar
  38. 38.
    Keihani S, Glassberg KI, Kajbafzadeh AM. Commentary to “Effect of Botox injection at the bladder neck in boys with bladder dysfunction after valve ablation”. J Pediatr Urol. 2015;11(2):104–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Koff SA, Mutabagani KH, Jayanthi VR. The valve bladder syndrome: pathophysiology and treatment with nocturnal bladder emptying. J Urol. 2002;167(1):291–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Nguyen MT, Pavlock CL, Zderic SA, Carr MC, Canning DA. Overnight catheter drainage in children with poorly compliant bladders improves post-obstructive diuresis and urinary incontinence. J Urol. 2005;174(4 Pt 2):1633–6. discussion 6CrossRefPubMedGoogle Scholar
  41. 41.
    Concodora CW, Reddy PP, VanderBrink BA. The role of video urodynamics in the management of the valve bladder. Curr Urol Rep. 2017;18(3):24.CrossRefPubMedGoogle Scholar
  42. 42.
    Wen JG, Li Y, Wang QW. Urodynamic investigation of valve bladder syndrome in children. J Pediatr Urol. 2007;3(2):118–21.CrossRefPubMedGoogle Scholar
  43. 43.
    Casey JT, Hagerty JA, Maizels M, Chaviano AH, Yerkes E, Lindgren BW, et al. Early administration of oxybutynin improves bladder function and clinical outcomes in newborns with posterior urethral valves. J Urol. 2012;188(4 Suppl):1516–20.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim YH, Horowitz M, Combs AJ, Nitti VW, Borer J, Glassberg KI. Management of posterior urethral valves on the basis of urodynamic findings. J Urol. 1997;158(3 Pt 2):1011–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Bajpai M, Pratap A, Tripathi M, Bal CS. Posterior urethral valves: preliminary observations on the significance of plasma renin activity as a prognostic marker. J Urol. 2005;173(2):592–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Bajpai M, Chaturvedi PK, Bal CS, Sharma MC, Kalaivani M. Posterior urethral valves: persistent renin angiotensin system activation after valve ablation and role of pre-emptive therapy with angiotensin converting enzyme-inhibitors on renal recovery. J Indian Assoc Pediatr Surg. 2013;18(2):74–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of UrologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations