Skip to main content
Log in

3-D Imaging and Simulation for Nephron Sparing Surgical Training

  • New Imaging Techniques (A Rastinehad and S Rais-Bahrami, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Minimally invasive partial nephrectomy (MIPN) is now considered the procedure of choice for small renal masses largely based on functional advantages over traditional open surgery. Lack of haptic feedback, the need for spatial understanding of tumor borders, and advanced operative techniques to minimize ischemia time or achieve zero-ischemia PN are among factors that make MIPN a technically demanding operation with a steep learning curve for inexperienced surgeons. Surgical simulation has emerged as a useful training adjunct in residency programs to facilitate the acquisition of these complex operative skills in the setting of restricted work hours and limited operating room time and autonomy. However, the majority of available surgical simulators focus on basic surgical skills, and procedure-specific simulation is needed for optimal surgical training. Advances in 3-dimensional (3-D) imaging have also enhanced the surgeon’s ability to localize tumors intraoperatively. This article focuses on recent procedure-specific simulation models for laparoscopic and robotic-assisted PN and advanced 3-D imaging techniques as part of pre- and some cases, intraoperative surgical planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Robson CJ. Radical nephrectomy for renal cell carcinoma. J Urol. 1963;89:37–42.

    CAS  PubMed  Google Scholar 

  2. Leibovich BC, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. Nephron sparing surgery for appropriately selected renal cell carcinoma between 4 and 7 cm results in outcome similar to radical nephrectomy. J Urol. 2004;171(3):1066–70. doi:10.1097/01.ju.0000113274.40885.db.

    Article  PubMed  Google Scholar 

  3. Becker F, Siemer S, Humke U, Hack M, Ziegler M, Stöckle M. Elective nephron sparing surgery should become standard treatment for small unilateral renal cell carcinoma: long-term survival data of 216 patients. Eur Urol. 2006;49(2):308–13. doi:10.1016/j.eururo.2005.10.020.

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen CT, Campbell SC, Novick AC. Choice of operation for clinically localized renal tumor. Urol Clin N Am. 2008;35(4):645–55. doi:10.1016/j.ucl.2008.07.002.

    Article  Google Scholar 

  5. Lau WK, Blute ML, Weaver AL, Torres VE, Zincke H. Matched comparison of radical nephrectomy vs nephron-sparing surgery in patients with unilateral renal cell carcinoma and a normal contralateral kidney. Mayo Clin Proc. 2000;75(12):1236–42.

    Article  CAS  PubMed  Google Scholar 

  6. Kheterpal E, Taneja SS. Partial nephrectomy: contemporary outcomes, candidate selection, and surgical approach. Urol Clin N Am. 2012;39(2):199–210. doi:10.1016/j.ucl.2012.02.003.

    Article  Google Scholar 

  7. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67(5):913–24. doi:10.1016/j.eururo.2015.01.005.

    Article  PubMed  Google Scholar 

  8. Donat SM, Diaz M, Bishoff JT, Coleman JA, Dahm P, Derweesh IH, et al. Follow-up for clinically localized renal neoplasms: AUA guideline. J Urol. 2013;190(2):407–16. doi:10.1016/j.juro.2013.04.121.

    Article  PubMed  Google Scholar 

  9. Winfield HN, Donovan JF, Godet AS, Clayman RV. Laparoscopic partial nephrectomy: initial case report for benign disease. J Endourol. 1993;7(6):521–6. doi:10.1089/end.1993.7.521.

    Article  CAS  PubMed  Google Scholar 

  10. Gill IS, Kavoussi LR, Lane BR, Blute ML, Babineau D, Colombo Jr JR, et al. Comparison of 1,800 laparoscopic and open partial nephrectomies for single renal tumors. J Urol. 2007;178(1):41–6. doi:10.1016/j.juro.2007.03.038.

    Article  PubMed  Google Scholar 

  11. Gettman MT, Blute ML, Chow GK, Neururer R, Bartsch G, Peschel R. Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with da Vinci robotic system. Urology. 2004;64(5):914–8. doi:10.1016/j.urology.2004.06.049.

    Article  PubMed  Google Scholar 

  12. Choi JE, You JH, Kim DK, Rha KH, Lee SH. Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol. 2015;67(5):891–901. doi:10.1016/j.eururo.2014.12.028.

    Article  PubMed  Google Scholar 

  13. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305. doi:10.1056/NEJMoa041031.

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen MM, Gill IS. Halving ischemia time during laparoscopic partial nephrectomy. J Urol. 2008;179(2):627–32. doi:10.1016/j.juro.2007.09.086. discussion 32.

    Article  PubMed  Google Scholar 

  15. Desai MM, de Castro Abreu AL, Leslie S, Cai J, Huang EY, Lewandowski PM, et al. Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol. 2014;66(4):713–9. doi:10.1016/j.eururo.2014.01.017.

    Article  PubMed  Google Scholar 

  16. Ukimura O, Nakamoto M, Gill IS. Three-dimensional reconstruction of renovascular-tumor anatomy to facilitate zero-ischemia partial nephrectomy. Eur Urol. 2012;61(1):211–7. doi:10.1016/j.eururo.2011.07.068.

    Article  PubMed  Google Scholar 

  17. Klatte T, Ficarra V, Gratzke C, Kaouk J, Kutikov A, Macchi V, et al. A literature review of renal surgical anatomy and surgical strategies for partial nephrectomy. Eur Urol. 2015;68(6):980–92. doi:10.1016/j.eururo.2015.04.010.

    Article  PubMed  Google Scholar 

  18. Shah PH, George AK, Moreira DM, Alom M, Okhunov Z, Salami S, et al. To clamp or not to clamp? Long-term functional outcomes for elective off-clamp laparoscopic partial nephrectomy. BJU Int. 2016;117(2):293–9. doi:10.1111/bju.13309.

    Article  PubMed  Google Scholar 

  19. Liberman D, Trinh QD, Jeldres C, Valiquette L, Zorn KC. Training and outcome monitoring in robotic urologic surgery. Nat Rev Urol. 2012;9(1):17–22. doi:10.1038/nrurol.2011.164.

    Article  Google Scholar 

  20. Bach C, Miernik A, Schonthaler M. Training in robotics: the learning curve and contemporary concepts in training. Arab J Urol. 2014;12(1):58–61. doi:10.1016/j.aju.2013.10.005.

    Article  PubMed  Google Scholar 

  21. Mottrie A, De Naeyer G, Schatteman P, Carpentier P, Sangalli M, Ficarra V. Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol. 2010;58(1):127–33. doi:10.1016/j.eururo.2010.03.045.

    Article  PubMed  Google Scholar 

  22. Subhas G, Mittal VK. Minimally invasive training during surgical residency. Am Surg. 2011;77(7):902–6.

    PubMed  Google Scholar 

  23. Pierorazio PM, Allaf ME. Minimally invasive surgical training: challenges and solutions. Urol Oncol: Semin Original Investig. 2009;27(2):208–13. doi:10.1016/j.urolonc.2008.09.017.

    Article  Google Scholar 

  24. Albani JM, Lee DI. Virtual reality-assisted robotic surgery simulation. J Endourol. 2007;21(3):285–7. doi:10.1089/end.2007.9978.

    Article  PubMed  Google Scholar 

  25. Stefanidis D, Korndorffer Jr JR, Sierra R, Touchard C, Dunne JB, Scott DJ. Skill retention following proficiency-based laparoscopic simulator training. Surgery. 2005;138(2):165–70. doi:10.1016/j.surg.2005.06.002.

    Article  PubMed  Google Scholar 

  26. Abboudi H, Khan MS, Aboumarzouk O, Guru KA, Challacombe B, Dasgupta P, et al. Current status of validation for robotic surgery simulators—a systematic review. BJU Int. 2013;111(2):194–205. doi:10.1111/j.1464-410X.2012.11270.x. This is a thorough review of available surgical simulators with detailed information on their status of validity.

  27. Moglia A, Ferrari V, Morelli L, Ferrari M, Mosca F, Cuschieri A. A systematic review of virtual reality simulators for robot-assisted surgery. Eur Urol. 2015. doi:10.1016/j.eururo.2015.09.021.

    PubMed  Google Scholar 

  28. Taylor GD, Johnson DB, Hogg DC, Cadeddu JA. Development of a renal tumor mimic model for learning minimally invasive nephron sparing surgical techniques. J Urol. 2004;172(1):382–5. doi:10.1097/01.ju.0000132358.82641.10.

    Article  PubMed  Google Scholar 

  29. Hidalgo J, Belani J, Maxwell K, Lieber D, Talcott M, Baron P, et al. Development of exophytic tumor model for laparoscopic partial nephrectomy: technique and initial experience. Urology. 2005;65(5):872–6. doi:10.1016/j.urology.2004.12.002.

    Article  PubMed  Google Scholar 

  30. Yang B, Zeng Q, Yinghao S, Wang H, Wang L, Xu C, et al. A novel training model for laparoscopic partial nephrectomy using porcine kidney. J Endourol. 2009;23(12):2029–33. doi:10.1089/end.2009.0245.

    Article  PubMed  Google Scholar 

  31. Hung AJ, Ng CK, Patil MB, Zehnder P, Huang E, Aron M, et al. Validation of a novel robotic-assisted partial nephrectomy surgical training model. BJU Int. 2012;110(6):870–4. doi:10.1111/j.1464-410X.2012.10953.x. This paper describes the first attempt to create a nephron sparing surgery specific full virtual reality module for robotic partial nephrectomy training. Also, they developed, for the first time, augmented reality modules based on surgery video footages with on laid virtual instruments.

  32. Hung AJ, Shah SH, Dalag L, Shin D, Gill IS. Development and validation of a novel robotic procedure specific simulation platform: partial nephrectomy. J Urol. 2015;194(2):520–6. doi:10.1016/j.juro.2015.02.2949.

    Article  PubMed  Google Scholar 

  33. Wunderlich H, Reichelt O, Schubert R, Zermann DH, Schubert J. Preoperative simulation of partial nephrectomy with three-dimensional computed tomography. BJU Int. 2000;86(7):777–81. doi:10.1046/j.1464-410x.2000.00898.x.

    Article  CAS  PubMed  Google Scholar 

  34. Coll DM, Uzzo RG, Herts BR, Davros WJ, Wirth SL, Novick AC. 3-dimensional volume rendered computerized tomography for preoperative evaluation and intraoperative treatment of patients undergoing nephron sparing surgery. J Urol. 1999;161(4):1097–102. doi:10.1016/s0022-5347(01)61599-4.

    Article  CAS  PubMed  Google Scholar 

  35. Lasser MS, Doscher M, Keehn A, Chernyak V, Garfein E, Ghavamian R. Virtual surgical planning: a novel aid to robot-assisted laparoscopic partial nephrectomy. J Endourol. 2012;26(10):1372–9. doi:10.1089/end.2012.0093. Virtual surgical planning should be considered a crucial step preoperative assessment for nephron sparing surgery. This paper provides great details about the applications of reconstructed 3-D images for virtual surgical planning including the new feature available in Da Vinci robotic system to review images in the console during the operation and simulate dissection and possible collecting system exposure or segmental vessel transection before actual surgical resection.

  36. Ng CK, Gill IS, Patil MB, Hung AJ, Berger AK, de Castro Abreu AL, et al. Anatomic renal artery branch microdissection to facilitate zero-ischemia partial nephrectomy. Eur Urol. 2012;61(1):67–74. doi:10.1016/j.eururo.2011.08.040. Zero ischemia partial nephrectomy requires selective clamping of tertiary or higher orders arteries. Renal vasculature model using reconstructed 3-D reconstructed CT images is an invaluable guidance tool for surgeons to identify target vessels. This paper explains the application of this model in great details.

  37. Shao P, Tang L, Li P, Xu Y, Qin C, Cao Q, et al. Application of a vasculature model and standardization of the renal Hilar approach in laparoscopic partial nephrectomy for precise segmental artery clamping. Eur Urol. 2013;63(6):1072–81. doi:10.1016/j.eururo.2012.10.017.

    Article  PubMed  Google Scholar 

  38. Komai Y, Sakai Y, Gotohda N, Kobayashi T, Kawakami S, Saito N. A novel 3-dimensional image analysis system for case-specific kidney anatomy and surgical simulation to facilitate clampless partial nephrectomy. Urology. 2014;83(2):500–7. doi:10.1016/j.urology.2013.09.053.

    Article  PubMed  Google Scholar 

  39. Zhang Y, Ge H-w, Li N-c, Yu C-f, Guo H-f, Jin S-h, et al. Evaluation of three-dimensional printing for laparoscopic partial nephrectomy of renal tumors: a preliminary report. World J Urol. 2015;34(4):533–7. doi:10.1007/s00345-015-1530-7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Jane Liu.

Ethics declarations

Conflict of Interest

Hamed Ahmadi and Jen-Jane Liu each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, H., Liu, JJ. 3-D Imaging and Simulation for Nephron Sparing Surgical Training. Curr Urol Rep 17, 58 (2016). https://doi.org/10.1007/s11934-016-0614-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-016-0614-2

Keywords

Navigation