Skip to main content
Log in

Ablative Therapies for the Treatment of Small Renal Masses: a Review of Different Modalities and Outcomes

  • New Imaging Techniques (A Rastinehad and S Rais-Bahrami, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The widespread utilization of abdominal imaging has led to an increase in incidentally detected small renal masses. Although partial nephrectomy is still considered the gold standard treatment for these masses, there are risks associated with surgical excision, potentially limiting treatment for older patients with multiple comorbidities. A variety of ablative techniques have developed over the past several decades, altering the management of small renal masses. It is likely that improvements in technology will only broaden the applications of ablative therapy. This article provides an update on the various ablative techniques and outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Richard PO et al. Renal tumor biopsy for small renal masses: a single-center 13-year experience. Eur Urol. 2015;68(6):1007–13.

    Article  PubMed  Google Scholar 

  2. Zargar H et al. Laparoscopic vs percutaneous cryoablation for the small renal mass: 15-year experience at a single center. Urology. 2015;85(4):850–5.

    Article  PubMed  Google Scholar 

  3. Campbell SC et al. Guideline for management of the clinical T1 renal mass. J Urol. 2009;182(4):1271–9.

    Article  PubMed  Google Scholar 

  4. Hollingsworth JM et al. Rising incidence of small renal masses: a need to reassess treatment effect. J Natl Cancer Inst. 2006;98(18):1331–4.

    Article  PubMed  Google Scholar 

  5. Winokur RS, Pua BB, Madoff DC. Role of combined embolization and ablation in management of renal masses. Semin Interv Radiol. 2014;31(1):82–5.

    Article  Google Scholar 

  6. Schmit GD et al. ABLATE: a renal ablation planning algorithm. AJR Am J Roentgenol. 2014;202(4):894–903.

    Article  PubMed  Google Scholar 

  7. Desai MM, Aron M, Gill IS. Laparoscopic partial nephrectomy versus laparoscopic cryoablation for the small renal tumor. Urology. 2005;66(5 Suppl):23–8.

    Article  PubMed  Google Scholar 

  8. Lucas SM et al. Renal function outcomes in patients treated for renal masses smaller than 4 cm by ablative and extirpative techniques. J Urol. 2008;179(1):75–9.

    Article  PubMed  Google Scholar 

  9. Woldu SL et al. Comparison of renal parenchymal volume preservation between partial nephrectomy, cryoablation, and radiofrequency ablation using 3D volume measurements. J Endourol. 2015;29(8):948–55.

    Article  PubMed  Google Scholar 

  10. Woldrich JM et al. Trends in the surgical management of localized renal masses: thermal ablation, partial and radical nephrectomy in the USA, 1998-2008. BJU Int. 2013;111(8):1261–8.

    Article  PubMed  Google Scholar 

  11. Gervais DA. Cryoablation versus radiofrequency ablation for renal tumor ablation: time to reassess? J Vasc Interv Radiol. 2013;24(8):1135–8.

    Article  PubMed  Google Scholar 

  12. Rodriguez Faba O, et al. Current status of focal cryoablation for small renal masses. Urology. 2015. 11(41).

  13. Baust JG et al. Mechanisms of cryoablation: clinical consequences on malignant tumors 2014. Cryobiology. 2014;68(1):1–11. doi:10.1016/j.cryobiol.2013.11.001.

    Article  CAS  PubMed  Google Scholar 

  14. Ge BH et al. Percutaneous renal cryoablation: short-axis ice-ball margin as a predictor of outcome. J Vasc Interv Radiol. 2016;27(3):403–9.

    Article  PubMed  Google Scholar 

  15. Klossner DP et al. Cryosurgical technique: assessment of the fundamental variables using human prostate cancer model systems. Cryobiology. 2007;55(3):189–99.

    Article  PubMed  Google Scholar 

  16. Kim EH et al. Comparison of laparoscopic and percutaneous cryoablation for treatment of renal masses. Urology. 2014;83(5):1081–7.

    Article  PubMed  Google Scholar 

  17. Hong K, Georgiades C. Radiofrequency ablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):008.

    Google Scholar 

  18. Goldberg SN et al. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3(8):636–44.

    Article  CAS  PubMed  Google Scholar 

  19. Lubner MG et al. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):007.

    Google Scholar 

  20. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177(4):437–47.

    Article  CAS  PubMed  Google Scholar 

  21. Rubinsky J et al. Optimal parameters for the destruction of prostate cancer using irreversible electroporation. J Urol. 2008;180(6):2668–74.

    Article  PubMed  Google Scholar 

  22. Trimmer CK et al. Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J Vasc Interv Radiol. 2015;26(10):1465–71. This is the largest study suggesting efficacy of IRE, a new technology which may had some advantages over thermal ablation due to a lack of a heat sink effect of surrounding structures.

    Article  PubMed  Google Scholar 

  23. Neal 2nd RE et al. In vivo irreversible electroporation kidney ablation: experimentally correlated numerical models. IEEE Trans Biomed Eng. 2015;62(2):561–9.

    Article  PubMed  Google Scholar 

  24. Matin SF et al. Residual and recurrent disease following renal energy ablative therapy: a multi-institutional study. J Urol. 2006;176(5):1973–7.

    Article  PubMed  Google Scholar 

  25. Donat SM et al. Follow-up for clinically localized renal neoplasms: AUA Guideline. J Urol. 2013;190(2):407–16.

    Article  PubMed  Google Scholar 

  26. Regier M, Chun F. Thermal ablation of renal tumors: indications, techniques and results. Dtsch Arztebl Int. 2015;112(24):412–8.

    PubMed  PubMed Central  Google Scholar 

  27. Nielsen TK et al. Computed tomography contrast enhancement following renal cryoablation—does it represent treatment failure? J Endourol. 2015;29(12):1353–60.

    Article  PubMed  Google Scholar 

  28. Psutka SP et al. Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol. 2013;63(3):486–92. This long follow up of RFA patient reveals good LRFS and CSS at a median of 6.5 years.

    Article  PubMed  Google Scholar 

  29. Olweny EO et al. Radiofrequency ablation versus partial nephrectomy in patients with solitary clinical T1a renal cell carcinoma: comparable oncologic outcomes at a minimum of 5 years of follow-up. Eur Urol. 2012;61(6):1156–61.

    Article  PubMed  Google Scholar 

  30. Caputo PA et al. Laparoscopic cryoablation for renal cell carcinoma: 100-month oncologic outcomes. J Urol. 2015;194(4):892–6. This is the longest follow up assessing oncologic outcomes for cryoablation, finding a 10 year CSS of 93%.

    Article  PubMed  Google Scholar 

  31. Thompson RH et al. Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol. 2015;67(2):252–9. In this comparison of partial nephrectomy and thermal ablation of SRMs, a high LRFS was seen across all groups, suggesting similar oncologic outcomes between surgical and ablative therapies.

    Article  PubMed  Google Scholar 

  32. Gahan JC et al. The performance of a modified RENAL nephrometry score in predicting renal mass radiofrequency ablation success. Urology. 2015;85(1):125–9.

    Article  PubMed  Google Scholar 

  33. Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–53.

    Article  PubMed  Google Scholar 

  34. Best SL et al. Long-term outcomes of renal tumor radio frequency ablation stratified by tumor diameter: size matters. J Urol. 2012;187(4):1183–9.

    Article  PubMed  Google Scholar 

  35. Lay AH et al. Oncologic efficacy of radio frequency ablation for small renal masses: clear cell vs papillary subtype. J Urol. 2015;194(3):653–7.

    Article  PubMed  Google Scholar 

  36. Lay AH et al. Likelihood of incomplete kidney tumor ablation with radiofrequency energy: degree of enhancement matters. J Urol. 2016;27(16):00204–4.

    Google Scholar 

  37. Castle SM, Salas N, Leveillee RJ. Initial experience using microwave ablation therapy for renal tumor treatment: 18-month follow-up. Urology. 2011;77(4):792–7.

    Article  PubMed  Google Scholar 

  38. Moreland AJ et al. High-powered microwave ablation of t1a renal cell carcinoma: safety and initial clinical evaluation. J Endourol. 2014;28(9):1046–52. This manuscript is the first and largest study to evaluate microwave ablation for the treatment of t1a tumors with improved technology. Out of the 55 tumors ablated, no disease progression was seen at 8 months.

    Article  PubMed  Google Scholar 

  39. Yu J et al. US-guided percutaneous microwave ablation versus open radical nephrectomy for small renal cell carcinoma: intermediate-term results. Radiology. 2014;270(3):880–7.

    Article  PubMed  Google Scholar 

  40. Olweny EO, Cadeddu JA. Novel methods for renal tissue ablation. Curr Opin Urol. 2012;22(5):379–84.

    Article  PubMed  Google Scholar 

  41. Tracy CR, Kabbani W, Cadeddu JA. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 2011;107(12):1982–7.

    Article  PubMed  Google Scholar 

  42. Pech M et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol. 2011;34(1):132–8.

    Article  PubMed  Google Scholar 

  43. Mir MC et al. Parenchymal volume preservation and ischemia during partial nephrectomy: functional and volumetric analysis. Urology. 2013;82(2):263–8.

    Article  PubMed  Google Scholar 

  44. Ji C et al. Laparoscopic radiofrequency ablation versus partial nephrectomy for cT1a renal tumors: long-term outcome of 179 patients. Urol Int. 2016;19:19.

    Google Scholar 

  45. Wehrenberg-Klee E et al. Impact on renal function of percutaneous thermal ablation of renal masses in patients with preexisting chronic kidney disease. J Vasc Interv Radiol. 2012;23(1):41–5.

    Article  PubMed  Google Scholar 

  46. Karam JA et al. Salvage surgery after energy ablation for renal masses. BJU Int. 2015;115(1):74–80.

    Article  PubMed  Google Scholar 

  47. Jimenez JA et al. Surgical salvage of thermal ablation failures for renal cell carcinoma. J Urol. 2016;195(3):594–600.

    Article  PubMed  Google Scholar 

  48. Okhunov Z et al. R.E.N.A.L. nephrometry score accurately predicts complications following laparoscopic renal cryoablation. J Urol. 2012;188(5):1796–800.

    Article  PubMed  Google Scholar 

  49. Farrell MA et al. Imaging-guided radiofrequency ablation of solid renal tumors. AJR Am J Roentgenol. 2003;180(6):1509–13.

    Article  CAS  PubMed  Google Scholar 

  50. Atwell TD et al. Complications following 573 percutaneous renal radiofrequency and cryoablation procedures. J Vasc Interv Radiol. 2012;23(1):48–54.

    Article  PubMed  Google Scholar 

  51. Balageas P et al. Ten-year experience of percutaneous image-guided radiofrequency ablation of malignant renal tumours in high-risk patients. Eur Radiol. 2013;23(7):1925–32.

    Article  CAS  PubMed  Google Scholar 

  52. Dirkmann D et al. Hypothermia and acidosis synergistically impair coagulation in human whole blood. Anesth Analg. 2008;106(6):1627–32.

    Article  PubMed  Google Scholar 

  53. Larcher A et al. Long-term oncologic outcomes of laparoscopic renal cryoablation as primary treatment for small renal masses. Urol Oncol. 2015;33(1):7.

    Article  Google Scholar 

  54. Wah TM et al. Radiofrequency ablation (RFA) of renal cell carcinoma (RCC): experience in 200 tumours. BJU Int. 2014;113(3):416–28.

    Article  PubMed  Google Scholar 

  55. Gervais DA et al. Radiofrequency ablation of renal cell carcinoma: part 1, indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185(1):64–71.

    Article  PubMed  Google Scholar 

  56. Hui GC et al. Comparison of percutaneous and surgical approaches to renal tumor ablation: metaanalysis of effectiveness and complication rates. J Vasc Interv Radiol. 2008;19(9):1311–20.

    Article  PubMed  Google Scholar 

  57. Zargar H et al. Cryoablation for small renal masses: selection criteria, complications, and functional and oncologic results. Eur Urol. 2016;69(1):116–28.

    Article  PubMed  Google Scholar 

  58. Breen DJ et al. Percutaneous cryoablation of renal tumours: outcomes from 171 tumours in 147 patients. BJU Int. 2013;112(6):758–65.

    Article  PubMed  Google Scholar 

  59. Chen JX et al. Complication and readmission rates following same-day discharge after percutaneous renal tumor ablation. J Vasc Interv Radiol. 2016;27(1):80–6.

    Article  PubMed  Google Scholar 

  60. Seideman CA et al. Renal tumour nephrometry score does not correlate with the risk of radiofrequency ablation complications. BJU Int. 2013;112(8):1121–4.

    Article  PubMed  Google Scholar 

  61. Bai J et al. Initial experience with retroperitoneoscopic microwave ablation of clinical T(1a) renal tumors. J Endourol. 2010;24(12):2017–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Caddedu.

Ethics declarations

Conflict of Interest

Nicholas Kavoussi, Noah Canvasser, and Jeffrey Caddedu each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavoussi, N., Canvasser, N. & Caddedu, J. Ablative Therapies for the Treatment of Small Renal Masses: a Review of Different Modalities and Outcomes. Curr Urol Rep 17, 59 (2016). https://doi.org/10.1007/s11934-016-0611-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-016-0611-5

Keywords

Navigation