Skip to main content

Advertisement

Log in

Stem Cell Therapy for Interstitial Cystitis/Bladder Pain Syndrome

  • Regenerative Medicine (A Atala, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a disease characterized by pelvic pain, usually with urinary frequency. These symptoms make patients suffer from a poor quality of life. However, there is still a lack of consensus on the pathophysiology and curable treatment of IC/BPS. We have reviewed several candidates for the pathophysiology of this disease and also treatments that have been used. Although several oral medications, bladder instillation therapies, fulguration for Hunner’s lesion, and hydrodistention have been tried as IC/BPS treatments, their outcomes have not been satisfactory. As the application of stem cell therapy is expanding into the urologic field, innovative strategies have been tested with animal models of IC/BPS and have shown promising therapeutic effects for reversing the symptoms of this disorder. Although several concerns about stem cell sources and their safety should be addressed before initiating human clinical trials, we introduce stem cell therapy as a valuable future treatment approach for IC/BPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chancellor MB, Yoshimura N. Treatment of interstitial cystitis. Urology. 2004;63(3 Suppl 1):85–92.

    Article  PubMed  Google Scholar 

  2. Nickel JC et al. Psychosocial phenotyping in women with interstitial cystitis/painful bladder syndrome: a case control study. J Urol. 2010;183(1):167–72.

    Article  PubMed  Google Scholar 

  3. Clemens JQ et al. Prevalence of painful bladder symptoms and effect on quality of life in black, Hispanic and white men and women. J Urol. 2007;177(4):1390–4.

    Article  PubMed  Google Scholar 

  4. Lin CS. Stem cell therapy for the bladder—where do we stand? J Urol. 2011;185(3):779–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maumus M et al. Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther. 2011;2(2):14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang D et al. Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: a multicenter clinical study. Arthritis Res Ther. 2014;16(2):R79.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sant GR, Theoharides TC. The role of the mast cell in interstitial cystitis. Urol Clin N Am. 1994;21(1):41–53.

    CAS  Google Scholar 

  8. Galli SJ. New concepts about the mast cell. N Engl J Med. 1993;328(4):257–65.

    Article  PubMed  CAS  Google Scholar 

  9. Church MK et al. Mast cells, neuropeptides and inflammation. Agents Actions. 1989;27(1–2):8–16.

    Article  PubMed  CAS  Google Scholar 

  10. Theoharides TC, Kempuraj D, Sant GR. Mast cell involvement in interstitial cystitis: a review of human and experimental evidence. Urology. 2001;57(6 Suppl 1):47–55.

    Article  PubMed  CAS  Google Scholar 

  11. Parsons CL et al. Abnormal urinary potassium metabolism in patients with interstitial cystitis. J Urol. 2005;173(4):1182–5.

    Article  PubMed  CAS  Google Scholar 

  12. Liu HT, Jiang YH, Kuo HC. Alteration of urothelial inflammation, apoptosis, and junction protein in patients with various bladder conditions and storage bladder symptoms suggest common pathway involved in underlying pathophysiology. Luts-Lower Urinary Tract Symptoms. 2015;7(2):102–7.

    Article  Google Scholar 

  13. Parsons CL et al. Bladder surface glycosaminoglycans: an epithelial permeability barrier. J Urol. 1990;143(1):139–42.

    PubMed  CAS  Google Scholar 

  14. Parsons CL, Greenspan C, Mulholland SG. The primary antibacterial defense mechanism of the bladder. Investig Urol. 1975;13(1):72–8.

    CAS  Google Scholar 

  15. Parsons CL et al. Role of surface mucin in primary antibacterial defense of bladder. Urology. 1977;9(1):48–52.

    Article  PubMed  CAS  Google Scholar 

  16. Parsons CL et al. The role of urinary potassium in the pathogenesis and diagnosis of interstitial cystitis. J Urol. 1998;159(6):1862–6. discussion 1866–7.

    Article  PubMed  CAS  Google Scholar 

  17. Chuang YC et al. Intravesical protamine sulfate and potassium chloride as a model for bladder hyperactivity. Urology. 2003;61(3):664–70.

    Article  PubMed  Google Scholar 

  18. Muchmore AV, Decker JM. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science. 1985;229(4712):479–81.

    Article  PubMed  CAS  Google Scholar 

  19. Tamm I, Horsfall Jr FL. Characterization and separation of an inhibitor of viral hemagglutination present in urine. Proc Soc Exp Biol Med. 1950;74(1):106–8.

    Article  PubMed  CAS  Google Scholar 

  20. Parsons CL et al. Cyto-injury factors in urine: a possible mechanism for the development of interstitial cystitis. J Urol. 2000;164(4):1381–4.

    Article  PubMed  CAS  Google Scholar 

  21. Stein P, Rajasekaran M, Parsons CL. Tamm-Horsfall protein protects urothelial permeability barrier. Urology. 2005;66(4):903–7.

    Article  PubMed  Google Scholar 

  22. Parsons CL. The role of a leaky epithelium and potassium in the generation of bladder symptoms in interstitial cystitis/overactive bladder, urethral syndrome, prostatitis and gynaecological chronic pelvic pain. BJU Int. 2011;107(3):370–5. The research focused on the mechanisms of the defected epithelium of bladder in the IC/BPS and showed the reason of pain in the patients.

    Article  PubMed  Google Scholar 

  23. van de Merwe JP. Interstitial cystitis and systemic autoimmune diseases. Nat Clin Pract Urol. 2007;4(9):484–91.

    Article  PubMed  CAS  Google Scholar 

  24. Martinez-Martinez LA et al. Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis: a review of case–control studies. J Clin Rheumatol. 2014;20(3):146–50.

    PubMed  Google Scholar 

  25. Johansson SL, Fall M. Clinical features and spectrum of light microscopic changes in interstitial cystitis. J Urol. 1990;143(6):1118–24.

    PubMed  CAS  Google Scholar 

  26. Harrington DS, Fall M, Johansson SL. Interstitial cystitis: bladder mucosa lymphocyte immunophenotyping and peripheral blood flow cytometry analysis. J Urol. 1990;144(4):868–71.

    PubMed  CAS  Google Scholar 

  27. Christmas TJ. Lymphocyte sub-populations in the bladder wall in normal bladder, bacterial cystitis and interstitial cystitis. Br J Urol. 1994;73(5):508–15.

    Article  PubMed  CAS  Google Scholar 

  28. Bicer F et al. Chronic pelvic allodynia is mediated by CCL2 through mast cells in an experimental autoimmune cystitis model. Am J Physiol Renal Physiol. 2015;308(2):F103–13.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Singh UP et al. The severity of experimental autoimmune cystitis can be ameliorated by anti-CXCL10 Ab treatment. PLoS One. 2013;8(11), e79751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. van de Merwe JP et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: an ESSIC proposal. Eur Urol. 2008;53(1):60–7.

    Article  PubMed  Google Scholar 

  31. Hanno PM et al. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J Urol. 2015;193(5):1545–53. The AUA guideline assessed the introduced researches which were involved with the pathogenesis, diagnosis and treatments, concluding that many treatment options are effective but have some limitations.

    Article  PubMed  Google Scholar 

  32. Hanno PM et al. AUA guideline for the diagnosis and treatment of interstitial cystitis/bladder pain syndrome. J Urol. 2011;185(6):2162–70.

    Article  PubMed  Google Scholar 

  33. Chang FY, Lu CL. Irritable bowel syndrome and migraine: bystanders or partners? J Neurogastroenterol Motil. 2013;19(3):301–11.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Smorgick N et al. Prevalence of pain syndromes, mood conditions, and asthma in adolescents and young women with endometriosis. J Pediatr Adolesc Gynecol. 2013;26(3):171–5.

    Article  PubMed  Google Scholar 

  35. van Ophoven A et al. A prospective, randomized, placebo controlled, double-blind study of amitriptyline for the treatment of interstitial cystitis. J Urol. 2004;172(2):533–6.

    Article  PubMed  Google Scholar 

  36. Teichman JM, Moldwin R. The role of the bladder surface in interstitial cystitis/painful bladder syndrome. Can J Urol. 2007;14(4):3599–607.

    PubMed  Google Scholar 

  37. Nickel JC et al. Pentosan polysulfate sodium for treatment of interstitial cystitis/bladder pain syndrome: insights from a randomized, double-blind, placebo controlled study. J Urol. 2015;193(3):857–62.

    Article  PubMed  CAS  Google Scholar 

  38. Sairanen J et al. Cyclosporine A and pentosan polysulfate sodium for the treatment of interstitial cystitis: a randomized comparative study. J Urol. 2005;174(6):2235–8.

    Article  PubMed  CAS  Google Scholar 

  39. Herrmann E, van Ophoven A. Re: Safety and efficacy of the use of intravesical and oral pentosan polysulfate sodium for interstitial cystitis: a randomized double-blind clinical trial: E. L. Davis, S. R. El Khoudary, E. O. Talbott, J. Davis and L. R. Regan J Urol 2008; 179: 177-185. J Urol. 2008;180(6):2718–9.

    Article  PubMed  Google Scholar 

  40. Henry RA. Re: Safety and efficacy of the use of intravesical and oral pentosan polysulfate sodium for interstitial cystitis: a randomized double-blind clinical trial. E. L. Davis, S. R. El Khoudary, E. O. Talbott, J. Davis and L. J. Regan. J Urol 2008; 179: 177–185. J Urol. 2008;180(1):411–2. author reply 412–3.

    Article  PubMed  Google Scholar 

  41. Kim A et al. Pretreatment features to influence effectiveness of intravesical hyaluronic acid instillation in refractory interstitial cystitis/painful bladder syndrome. Int Neurourol J. 2014;18(3):163–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kuo HC, Chancellor MB. Comparison of intravesical botulinum toxin type A injections plus hydrodistention with hydrodistention alone for the treatment of refractory interstitial cystitis/painful bladder syndrome. BJU Int. 2009;104(5):657–61.

    Article  PubMed  CAS  Google Scholar 

  43. Ryu J et al. Elimination of Hunner’s ulcers by fulguration in patients with interstitial cystitis: is it effective and long lasting? Korean J Urol. 2013;54(11):767–71.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ratajczak MZ et al. A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia. 2007;21(5):860–7.

    PubMed  CAS  Google Scholar 

  45. Cheng AS, Yau TM. Paracrine effects of cell transplantation: strategies to augment the efficacy of cell therapies. Semin Thorac Cardiovasc Surg. 2008;20(2):94–101.

    Article  PubMed  Google Scholar 

  46. Maltais S et al. The paracrine effect: pivotal mechanism in cell-based cardiac repair. J Cardiovasc Transl Res. 2010;3(6):652–62.

    Article  PubMed  Google Scholar 

  47. Gharaibeh B et al. Terminal differentiation is not a major determinant for the success of stem cell therapy—cross-talk between muscle-derived stem cells and host cells. Stem Cell Res Ther. 2011;2(4):31.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ratajczak MZ et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia. 2006;20(11):1915–24.

    Article  PubMed  CAS  Google Scholar 

  49. Kucia M et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells. 2005;23(7):879–94.

    Article  PubMed  CAS  Google Scholar 

  50. Tsuzuki Y et al. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60(22):6248–52.

    PubMed  CAS  Google Scholar 

  51. Morikawa S et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med. 2009;206(11):2483–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Corpechot C et al. Hepatocyte growth factor and c-Met inhibition by hepatic cell hypoxia: a potential mechanism for liver regeneration failure in experimental cirrhosis. Am J Pathol. 2002;160(2):613–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kucia M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia. 2006;20(1):18–28.

    Article  PubMed  CAS  Google Scholar 

  54. Song M et al. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev. 2014;23(6):654–63.

    Article  PubMed  CAS  Google Scholar 

  55. Wezel F, Southgate J, Thomas DF. Regenerative medicine in urology. BJU Int. 2011;108(7):1046–65.

    Article  PubMed  CAS  Google Scholar 

  56. Zhao W et al. Periurethral injection of autologous adipose-derived stem cells with controlled-release nerve growth factor for the treatment of stress urinary incontinence in a rat model. Eur Urol. 2011;59(1):155–63.

    Article  PubMed  CAS  Google Scholar 

  57. Huang YC et al. Adipose derived stem cells ameliorate hyperlipidemia associated detrusor overactivity in a rat model. J Urol. 2010;183(3):1232–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhang H et al. Adipose tissue-derived stem cells ameliorate diabetic bladder dysfunction in a type II diabetic rat model. Stem Cells Dev. 2012;21(9):1391–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Woo LL et al. Mesenchymal stem cell recruitment and improved bladder function after bladder outlet obstruction: preliminary data. J Urol. 2011;185(3):1132–8.

    Article  PubMed  Google Scholar 

  60. Song YS et al. Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant. 2012;21(8):1641–50.

    Article  PubMed  Google Scholar 

  61. Adamowicz J, Pokrywczynska M, Drewa T. Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials. Med Hypotheses. 2014;82(6):670–3.

    Article  PubMed  Google Scholar 

  62. Song M et al. Mesenchymal stem cell therapy alleviates interstitial cystitis by activating Wnt signaling pathway. Stem Cells Dev. 2015;24(14):1648–57. The research showed the therapeutic effects and mechanisms of mesenchymal stem cell therapy in animal model of interstitial cystitis.

    Article  PubMed  CAS  Google Scholar 

  63. Westropp JL, Buffington CA. In vivo models of interstitial cystitis. J Urol. 2002;167(2 Pt 1):694–702.

    Article  PubMed  Google Scholar 

  64. Shin K et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature. 2011;472(7341):110–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dihlmann S, Siermann A, von Knebel Doeberitz M. The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene. 2001;20(5):645–53.

    Article  PubMed  CAS  Google Scholar 

  66. Sordella R et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science. 2004;305(5687):1163–7.

    Article  PubMed  CAS  Google Scholar 

  67. Chen YT et al. Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat. J Pineal Res. 2014;57(3):248–61. The report revealed that combination of melatonin and mesenchymal stem cell significantly improved interstitial cystitis.

    Article  PubMed  CAS  Google Scholar 

  68. Thomson JA et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  PubMed  CAS  Google Scholar 

  69. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.

    Article  PubMed  CAS  Google Scholar 

  70. Tachibana M et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  72. Wernig M et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448(7151):318–24.

    Article  PubMed  CAS  Google Scholar 

  73. Wang CH et al. Late-outgrowth endothelial cells attenuate intimal hyperplasia contributed by mesenchymal stem cells after vascular injury. Arterioscler Thromb Vasc Biol. 2008;28(1):54–60.

    Article  PubMed  CAS  Google Scholar 

  74. Westerweel PE, Verhaar MC. Directing myogenic mesenchymal stem cell differentiation. Circ Res. 2008;103(6):560–1.

    Article  PubMed  CAS  Google Scholar 

  75. Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: the less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev. 2013;22(2):193–203.

    Article  PubMed  CAS  Google Scholar 

  76. Montzka K, Heidenreich A. Application of mesenchymal stromal cells in urological diseases. BJU Int. 2010;105(3):309–12.

    Article  PubMed  Google Scholar 

  77. Bianco P et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013;19(1):35–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Jaing TH. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant. 2014;23(4–5):493–6.

    Article  PubMed  Google Scholar 

  79. Damien P, Allan DS. Regenerative therapy and immune modulation using umbilical cord blood-derived cells. Biol Blood Marrow Transplant. 2015;21(9):1545–54.

    Article  PubMed  Google Scholar 

  80. Nayoun K, Seok-Goo C. New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells. 2015;8(1):54–68.

    Article  Google Scholar 

  81. Liang X et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014;23(9):1045–59.

    Article  PubMed  Google Scholar 

  82. Kucia M et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4(+) stem cells identified in adult bone marrow. Leukemia. 2006;20(5):857–69.

    Article  PubMed  CAS  Google Scholar 

  83. Kim Y et al. The molecular nature of very small embryonic-like stem cells in adult tissues. Int J Stem Cells. 2014;7(2):55–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Schwartz SD et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–20.

    Article  PubMed  CAS  Google Scholar 

  85. Schwartz SD et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16.

    Article  PubMed  Google Scholar 

  86. Moon SH et al. Differentiation of hESCs into mesodermal subtypes: vascular-, hematopoietic- and mesenchymal-lineage cells. Int J Stem Cells. 2011;4(1):24–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Lee MO et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A. 2013;110(35):E3281–90.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kang H et al. The therapeutic effects of human mesenchymal stem cells primed with sphingosine-1 phosphate on pulmonary artery hypertension. Stem Cells Dev. 2015;24(14):1658–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI14C2321 and HI14C3365), to MSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Soo Choo.

Ethics declarations

Conflict of Interest

Aram Kim, Dong-Myung Shin, and Myung-Soo Choo each had research support from the Korean Health Technology R&D Project. Terms of the arrangement were reviewed and approved by the University of Ulsan College of Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A., Shin, DM. & Choo, MS. Stem Cell Therapy for Interstitial Cystitis/Bladder Pain Syndrome. Curr Urol Rep 17, 1 (2016). https://doi.org/10.1007/s11934-015-0563-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-015-0563-1

Keywords

Navigation