Skip to main content
Log in

Percutaneous Stone Removal: New Approaches to Access and Imaging

  • New Imaging Techniques (A Rastinehad and S Rais-Bahrami, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Percutaneous renal access and removal of large renal calculi was first described nearly 40 years ago and has since become the gold standard in management of large and complex renal calculi. In this same time period, technological and medical advances have allowed this procedure to develop in improved efficacy and morbidity. The following review offers an update to new approaches to percutaneous renal access and imaging in the management of large and complex renal calculi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Scales CD Jr, Smith AC, Hanley JM, Saigal CS; Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.

  2. Kulkarni NM, Eisner BH, Pinho DF, Joshi MC, Kambadakone AR, Sahani DV. Determination of renal stone composition in phantom and patients using single source dual energy CT. J Comput Assist Tomogr. 2013;37(1):37–45.

    Article  PubMed  Google Scholar 

  3. Fernstrom I, Johansson B. Percutaneous pyelolithotomy. A new extraction technique. Scand J Urol Nephrol. 1976;10(3):257–9.

    CAS  PubMed  Google Scholar 

  4. Antonelli JA, Pearle MS. Advances in percutaneous nephrolithotomy. Urol Clin N Am. 2013;40(1):99–113.

    Article  Google Scholar 

  5. Preminger GM, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf JS Jr; AUA Nephrolithiasis Guideline Panel. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005;173(6):1991–2000.

  6. Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, et al. Guidelines on urolithiasis. Arnhem: European Association of Urology (EAU); 2013. p. 100 [687 references].

    Google Scholar 

  7. Bradley WG. History of medical imaging. Proc Am Philos Soc. 2008;152(3):349–61.

    PubMed  Google Scholar 

  8. Seibert J. One hundred years of medical diagnostic imaging technology. Health Phys. 1995;69(5):695–720.

    Article  CAS  PubMed  Google Scholar 

  9. Motley G, Dalrymple N, Keesling C, Fischer J, Harmon W. Hounsfield unit density in the determination of urinary stone composition. Urology. 2001;58(2):170–3.

  10. Kraśnicki T, Podgórski P, Guziński M, Czarnecka A, Tupikowski K, Garcarek J, et al. Novel clinical applications of dual energy computed tomography. Adv Clin Exp Med. 2012;21(6):831–41.

    PubMed  Google Scholar 

  11. Matlaga BR, Kawamoto S, Fishman E. Dual source computed tomography: a novel technique to determine stone composition. Urology. 2008;72(5):1164–8.

    Article  PubMed  Google Scholar 

  12. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A. Dual-energy CT with single- and dual-source scanners current applications in evaluating the genitourinary tract. RadioGraphics. 2012;32:353–69.

    Article  PubMed  Google Scholar 

  13. Wisenbaugh ES, Paden RG, Silva AC, Humphreys MR. Dual-energy vs conventional computed tomography in determining stone composition. Urology. 2014;83(6):1243–7. The authors do an impressive job at demonstrating how this new and exciting technology of dual-energy CT is superior to conventional CT and propose and provide a foundation for future validation studies.

  14. Jepperson MA, Thiel DD, Cernigliaro JG, Broderick GA, Parker AS, Haley WE. Determination of ureter stent appearance on dual-energy computed tomography scan. Urology. 2012;80(5):986–9.

  15. el Ibrahim SH, Haley WE, Jepperson MA, Thiel DD, Wehle MJ, Cernigliaro JG. Three-dimensional dual-energy computed tomography for enhancing stone/stent contrasting and stone visualization in urolithiasis. Case Rep Urol. 2013;2013:646087.

  16. Lojanapiwat B. The ideal puncture approach for PCNL: fluoroscopy, ultrasound or endoscopy? Indian J Urol. 2013;29(3):208–13.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Pedersen JF. Percutaneous nephrostomy guided by ultrasound. J Urol. 1974;112(2):157–9.

    CAS  PubMed  Google Scholar 

  18. Yan S, Xiang F, Yongsheng S. Percutaneous nephrolithotomy guided solely by ultrasonography: a 5-year study of >700 cases. BJU Int. 2013;112(7):965–71.

    PubMed  Google Scholar 

  19. Rodrigues PL, Vilaça JL, Oliveira C, Cicione A, Rassweiler J, Fonseca J, Rodrigues NF, Correia-Pinto J, Lima E. Collecting system percutaneous access using real-time tracking sensors: first pig model in vivo experience. J Urol. 2013;190(5):1932–7.

  20. Li R, Li T, Qian X, Qi J, Wu D, Liu J. Real-time ultrasound-guided percutaneous nephrolithotomy using SonixGPS navigation: clinical experience and practice in a single center in China. J Endourol. 2015;29(2):158–61.

  21. Lodh B, Gupta S, Singh AK, Sinam RS. Ultrasound guided direct percutaneous nephrostomy (PCN) tube placement: stepwise report of a new technique with its safety and efficacy evaluation. J Clin Diagn Res. 2014;8(2):84–7.

  22. Watterson JD, Soon S, Jana K. Access related complications during percutaneous nephrolithotomy: urology versus radiology at a single academic institution. J Urol. 2006;176(1):142–5.

    Article  PubMed  Google Scholar 

  23. El-Assmy AM, Shokeir AA, Mohsen T, El-Tabey N, El-Nahas AR, Shoma AM, Eraky I, El-Kenawy MR, El-Kappany HA. Renal access by urologist or radiologist for percutaneous nephrolithotomy—is it still an issue? J Urol. 2007;178(3 Pt 1):916–20. discussion 920.

  24. Tomaszewski JJ, Ortiz TD, Gayed BA, Smaldone MC, Jackman SV, Averch TD. Renal access by urologist or radiologist during percutaneous nephrolithotomy. J Endourol. 2010;24(11):1733–7.

  25. Sivalingam S, Cannon ST, Nakada SY. Current practices in percutaneous nephrolithotomy among endourologists. J Endourol. 2014;28(5):524–7.

    Article  PubMed  Google Scholar 

  26. Bird VG, Fallon B, Winfield HN. Practice patterns in the treatment of large renal stones. J Endourol. 2003;17:355–63.

    Article  PubMed  Google Scholar 

  27. Mishra S, Kurien A, Ganpule A, Muthu V, Sabnis R, Desai M. Percutaneous renal access training: content validation comparison between a live porcine and a virtual reality (VR) simulation model. BJU Int. 2010;106(11):1753–6.

  28. Papatsoris AG, Shaikh T, Patel D, Bourdoumis A, Bach C, Buchholz N, Masood J, Junaid I. Use of a virtual reality simulator to improve percutaneous renal access skills: a prospective study in urology trainees. Urol Int. 2012;89(2):185–90.

  29. Zhang Y, Yu CF, Liu JS, Wang G, Zhu H, Na YQ. Training for percutaneous renal access on a virtual reality simulator. Chin Med J. 2013;126(8):1528–30.

    PubMed  Google Scholar 

  30. Shergill IS, Abdulmajed MI, Moussa SA, Rix GH. The 3-finger technique in establishing percutaneous renal access: a new and simple method for junior trainees. J Surg Educ. 2012;69(4):550–3.

  31. Turney BW. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access. J Endourol. 2014;28(3):360–3.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tanriverdi O, Boylu U, Kendirci M, Kadihasanoglu M, Horasanli K, Miroglu C. The learning curve in the training of percutaneous nephrolithotomy. Eur Urol. 2007;52(1):206–11.

  33. Munver R, Delvecchio FC, Newman GE, Preminger GM. Critical analysis of supracostal access for percutaneous renal surgery. J Urol. 2001;166:1242–6.

    Article  CAS  PubMed  Google Scholar 

  34. Tefekli A, Esen T, Olbert PJ, Tolley D, Nadler RB, Sun YH, Duvdevani M, de la Rosette JJ; CROES PCNL Study Group. Isolated upper pole access in percutaneous nephrolithotomy: a large-scale analysis from the CROES percutaneous nephrolithotomy global study. J Urol. 2013;189(2):568–73.

  35. Lightfoot M, Ng C, Engebretsen S, Wallner C, Huang G, Li R, Alsyouf M, Olgin G, Smith JC, Baldwin DD. Analgesic use and complications following upper pole access for percutaneous nephrolithotomy. J Endourol. 2014;28(8):909–14.

  36. Maheshwari PN, Andankar MG, Bansal M. Nephrostomy tube after percutaneous nephrolithotomy: large-bore or pigtail catheter? J Endourol. 2000;14(9):735–7.

    Article  CAS  PubMed  Google Scholar 

  37. Pietrow PK, Auge BK, Lallas CD, Santa-Cruz RW, Newman GE, Albala DM, et al. Pain after percutaneous nephrolithotomy: impact of nephrostomy tube size. J Endourol. 2003;17(6):411–4.

    Article  PubMed  Google Scholar 

  38. Desai MR, Kukreja RA, Desai MM, Mhaskar SS, Wani KA, Patel SH, Bapat SD. A prospective randomized comparison of type of nephrostomy drainage following percutaneous nephrostolithotomy: large bore versus small bore versus tubeless. J Urol. 2004;172(2):565–7.

  39. Crook TJ, Lockyer CR, Keoghane SR, Walmsley BH. A randomized controlled trial of nephrostomy placement versus tubeless percutaneous nephrolithotomy. J Urol. 2008;180(2):612–4.

  40. Jackman SV, Hedican SP, Peters CA, Docimo SG. Percutaneous nephrolithotomy in infants and preschool age children: experience with a new technique. Urology. 1998;52(4):697–701.

    Article  CAS  PubMed  Google Scholar 

  41. Desai J, Solanki R. Ultra-mini percutaneous nephrolithotomy (UMP): one more armamentarium. BJU Int. 2013;112(7):1046–9.

    PubMed  Google Scholar 

  42. de Cogain MR, Krambeck AE. Advances in tubeless percutaneous nephrolithotomy and patient selection: an update. Curr Urol Rep. 2013;14(2):130–7.

    Article  PubMed  Google Scholar 

  43. Zhong Q, Zheng C, Mo J, Piao Y, Zhou Y, Jiang Q. Total tubeless versus standard percutaneous nephrolithotomy: a meta-analysis. J Endourol. 2013;27(4):420–6. The authors address the current literature on a popular new way of preforming PCN: tubeless. This meta-analysis includes 5 randomized and 4 case controlled trials, and concludes that total tubeless PCNL is a safe and effective procedure, reducing hospital stays, analgesic requirements, and time to normal activity without compromising complication rates in select patients.

  44. Rifaioglu MM, Onem K, Buldu I, Karatag T, Istanbulluoglu MO. Tubeless percutaneous nephrolithotomy: yes but when? A multicentre retrospective cohort study. Urolithiasis. 2014;42(3):255–62.

  45. Isac W, Rizkala E, Liu X, Noble M, Monga M. Tubeless percutaneous nephrolithotomy: outcomes with expanded indications. Int Braz J Urol. 2014;40(2):204–11.

  46. Pillai S, Mishra D, Sharma P, Venkatesh G, Chawla A, Hegde P, Thomas J. Tubeless simultaneous bilateral percutaneous nephrolithotomy: safety, feasibility and efficacy in an Indian setting. Int J Urol. 2014;21(5):497–502.

  47. Choi SW, Kim KS, Kim JH, Park YH, Bae WJ, Hong SH, Lee JY, Kim SW, Hwang TK, Cho HJ. Totally tubeless versus standard percutaneous nephrolithotomy for renal stones: analysis of clinical outcomes and cost. J Endourol. 2014;28(12):1487–94.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Rick C. Slater and Dr. Michael Ost each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rick C. Slater.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, R.C., Ost, M. Percutaneous Stone Removal: New Approaches to Access and Imaging. Curr Urol Rep 16, 29 (2015). https://doi.org/10.1007/s11934-015-0501-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-015-0501-2

Keywords

Navigation