Skip to main content

Advertisement

Log in

The Role of Imaging in the Active Surveillance of Small Renal Masses

  • New Imaging Techniques (A Atala and A Rastinehad, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Up to 66 % of renal cell carcinomas are detected as small renal masses before the presence of clinical symptoms. Small renal mass treatment has evolved from the exclusive use of radical nephrectomy to the use of nephron sparing procedures where possible. An increase in elderly and comorbid patients, together with the notion that just 20 % of small renal masses show high malignant potential, has prompted interest in active surveillance as a treatment option. Modern imaging techniques provide objective follow-up parameters, namely size, invasion of collecting system or perirenal fat and enhancement patterns, with minimal complication risks or patient discomfort. This review evaluates recent developments in the field of active surveillance for small renal masses. Special focus is placed on the role of imaging in the primary decision making and subsequent follow-up during active surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACT:

11C-acetate

AKI:

Acute kidney injury

AML:

Angiomyolipoma

AS:

Active surveillance

AUA:

American Urological Association

CEUS:

Contrast enhanced ultrasound

CKD:

Chronic kidney disease

CT:

Computed tomography

ccRCC:

Clear cell renal cell carcinoma

EAU:

European Association of Urology

FDG:

18F-fluorodeoxyglucose

HU:

Houndsfields units

MRI:

Magnetic resonance imaging

NSF:

Nephrogenic systemic fibrosis

PET:

Positron emission tomography

RCC:

Renal cell carcinoma

RFA:

Radiofrequency ablation

SRM:

Small renal mass

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Volpe A, Panzarella T, Rendon RA, et al. The natural history of incidentally detected small renal masses. Cancer. 2004;100:738–45.

    Article  PubMed  Google Scholar 

  2. Lane BR, Tobert CM, Riedinger CB. Growth kinetics and active surveillance for small renal masses. Curr Opin Urol. 2012;22:353–9.

    Article  PubMed  Google Scholar 

  3. Sun M, Trinh VQH, Roghmann F, et al. Contemporary incidence amd mortality rates of renal cell carcinoma in the United States [abstract 1299]. Presented at the 2013 AUA-meeting. San Diego, United States; May 4–8, 2013.

  4. American Cancer Society: Cancer Facts & Figures 2012. Available at: http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2012.

  5. Jacobs BL, Tan HJ, Montgomery JS, et al. Understanding criteria for surveillance of patients with a small renal mass. Urology. 2012;79:1027–32.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Ljungberg B, Cowan NC, Hanbury DC, et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol. 2010;58:398–406. This article covers the current version (2010) of the EAU guidelines on renal cell carcinoma.

    Article  PubMed  Google Scholar 

  7. Jewett MA, Mattar K, Basiuk J, et al. Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol. 2011;60:39–44. This is the first prospective AS study performed providing valuable data on tumour progression.

    Article  PubMed  Google Scholar 

  8. Samplaski MK, Zhou M, Lane BR, et al. Renal mass sampling: an enlightened perspective. Int J Urol. 2011;18:5–19.

    Article  PubMed  Google Scholar 

  9. Kutikov A, Fossett LK, Ramchandani P, et al. Incidence of benign pathologic findings at partial nephrectomy for solitary renal mass presumed to be renal cell carcinoma on preoperative imaging. Urology. 2006;68:737–40.

    Article  PubMed  Google Scholar 

  10. Crispen PL, Boorjian SA, Lohse CM, et al. Outcomes following partial nephrectomy by tumor size. J Urol. 2008;180:1912–7.

    Article  PubMed  Google Scholar 

  11. Remzi M, Oezsoy M, Klingler HC, et al. Are small renal tumors harmless? Analysis of histopathological features according to tumor size in tumors 4 cm. or less in diameter. J Urol. 2006;175:896–9.

    Article  Google Scholar 

  12. Lane BR, Abouassaly R, Gao T, et al. Active treatment of localized renal tumors may not impact overall survival in patients aged 75 years or older. Cancer. 2010;116:3119–26.

    Article  PubMed  Google Scholar 

  13. Crispen PL, Viterbo R, Fox EB, et al. Delayed intervention of sporadic renal masses undergoing active surveillance. Cancer. 2008;112:1051–7. This study evaluates delayed intervention following a period of active surveillance. Focussing on altered minimally invasive or nephron- sparing treatment plans, increased the risk of stage progression, and/or decreased recurrence-free survival rates.

    Article  PubMed  Google Scholar 

  14. Donat SM, Diaz M, Bishoff JT, et al. Follow-up for clinically localized renal neoplasms: AUA guideline. J Urol. 2013;190:407–16.

    Article  PubMed  Google Scholar 

  15. Mak PHK, Campbell RCH, Irwin MG. The ASA physical status classification: inter-observer consistency. Anaesth Intensive Care. 2002;30:633–40.

    CAS  PubMed  Google Scholar 

  16. Audenet F, Audouin M, Drouin SJ, et al. Charlson score as a single pertinent criterion to select candidates for active surveillance among patients with small renal masses. World J Urol. 2013. [Epub ahead of print].

  17. Volpe A, Cadeddu JA, Cestari A, et al. Contemporary management of small renal masses. Eur Urol. 2011;60:501–15.

    Article  PubMed  Google Scholar 

  18. Frank I, Blute ML, Cheville JC, et al. Solid renal tumors: an analysis of pathological features related to tumor size. J Urol. 2003;170:2217–20. This article provides structurally presented data for the distribution of benign and malignant renal masses.

    Article  PubMed  Google Scholar 

  19. Soga N, Nishikawa K, Takaki H, et al. Low incidence of benign lesions in resected suspicious renal masses greater than 2 cm: Single-center experience from Japan. Int J Urol. 2012;19:729–34.

    Article  PubMed  Google Scholar 

  20. Schlomer B, Figenshau RS, Yan Y, Venkatesh R, Bhayani SB. Pathological features of renal neoplasms classified by size and symptomatology. J Urol. 2006;176:1317–20.

    Article  PubMed  Google Scholar 

  21. Duchene DA, Lotan Y, Cadeddu JA, Sagalowsky AI, Koeneman KS. Histopathology of surgically managed renal tumors: analysis of a contemporary series. Urology. 2003;62:827–30.

    Article  PubMed  Google Scholar 

  22. Violette P, Abourbih S, Szymanski KM, et al. Solitary solid renal mass: can we predict malignancy? BJU Int. 2012;110:548–52.

    Article  Google Scholar 

  23. Guethmundsson E, Hellborg H, Lundstam S, Erikson S, Ljungberg B. Metastatic potential in renal cell carcinomas ≤7 cm: Swedish Kidney Cancer Quality Register data. Eur Urol. 2011;60:975–82. This study evaluates local T-category distribution and the incidence of lymph node and distant metastases in relation to tumor size in RCCs ≤7cm using data from the National Swedish Kidney Cancer Register.

    Article  PubMed  Google Scholar 

  24. Kurta JM, Thompson RH, Kundu S, et al. Contemporary imaging of patients with a renal mass: does size on computed tomography equal pathological size? BJU Int. 2009;103:24–7. This study evaluates the difference between tumour size on CT imaging and the pathological size in a group of 521 patients.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lee SE, Lee WK, Kim DS, et al. Comparison of radiographic and pathologic sizes of renal tumors. World J Urol. 2010;28:263–7.

    Article  PubMed  Google Scholar 

  26. Ates F, Akyol I, Sildiroglu O, et al. Preoperative imaging in renal masses: does size on computed tomography correlate with actual tumor size? Int Urol Nephrol. 2010;42:861–6.

    Article  PubMed  Google Scholar 

  27. Kathrins M, Caesar S, Mucksavage P, Guzzo T. Renal mass size: concordance between pathology and radiology. Curr Opin Urol. 2013;23:389–93.

    Article  PubMed  Google Scholar 

  28. Mucksavage P, Ramchandani P, Malkowicz SB, Guzzo TJ. Is ultrasound imaging inferior to computed tomography or magnetic resonance imaging in evaluating renal mass size? Urology. 2012;79:28–31. This study evaluates the accuracy of ultrasound in determining the size of renal masses.

    Article  PubMed  Google Scholar 

  29. Marhuenda A, Martin MI, Deltoro C, Santos J, Rubio BJ. Radiologic evaluation of small renal masses (I): pretreatment management. Adv Urol. 2008. 415848.

  30. Ascenti G, Mileto A, Krauss B, et al. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol. 2013;23:2288–95.

    Article  PubMed  Google Scholar 

  31. Pierorazio PM, Hyams ES, Tsai S, et al. Multiphasic enhancement patterns of small renal masses (≤4 cm) on preoperative computed tomography: utility for distinguishing subtypes of renal cell carcinoma, angiomyolipoma, and oncocytoma. Urology. 2013;81:1265–72. This study analyzes the enhancement patterns of SRMs during 4-phase CT imaging in order to predict tumour histology.

    Article  PubMed  Google Scholar 

  32. Gakis G, Kramer U, Schilling D, et al. Small renal oncocytomas: differentiation with multiphase CT. Eur J Radiol. 2011;80:274–8.

    Article  PubMed  Google Scholar 

  33. Bata P, Gyebnar J, Tarnoki DL, et al. Clear cell renal cell carcinoma and papillary renal cell carcinoma: differentiation of distinct histological types with multiphase CT. Diagn Interv Radiol. 2013;19:387–92.

    PubMed  Google Scholar 

  34. Millet I, Doyon FC, Hoa D, et al. Characterization of small solid renal lesions: can benign and malignant tumors be differentiated with CT? AJR Am J Roentgenol. 2011;197:887–96. This study evaluates the diagnostic performance of CT in differentiating between benign and malignant SRMs.

    Article  PubMed  Google Scholar 

  35. Bird VG, Kanagarajah P, Morillo G, et al. Differentiation of oncocytoma and renal cell carcinoma in small renal masses (<4 cm): the role of 4-phase computerized tomography. World J Urol. 2011;29:787–92. This study evaluates the use of 4-phase CT for the differentiation between oncocytoma and RCC in SRMs.

    Article  CAS  PubMed  Google Scholar 

  36. Shebel HM, Elsayes KM, Sheir KZ, et al. Quantitative enhancement washout analysis of solid cortical renal masses using multidetector computed tomography. J Comput Assist Tomogr. 2011;35:337–42.

    Article  PubMed  Google Scholar 

  37. Woo S, Cho JY, Kim SH, et al. Segmental enhancement inversion of small renal oncocytoma: differences in prevalence according to tumor size. AJR Am J Roentgenol. 2013;200:1054–9.

    Article  PubMed  Google Scholar 

  38. Tsivian M, Abern MR, Yoo J, et al. Radiation exposure associated with dedicated renal mass computer tomography protocol: impact of patient characteristics. J Endourol. 2013;27:1102–6.

    Article  PubMed  Google Scholar 

  39. Smith-Bindman R, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169:2078–86.

    Article  PubMed  Google Scholar 

  40. Bradley AJ, Lim YY, Singh FM. Imaging features, follow-up, and management of incidentally detected renal lesions. Clin Radiol. 2011;66:1129–39.

    Article  CAS  PubMed  Google Scholar 

  41. Hecht EM, Israel GM, Krinsky GA, et al. Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology. 2004;232:373–8.

    Article  PubMed  Google Scholar 

  42. Hindman N, Ngo L, Genega EM, et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology. 2012;265:468–77.

    Article  PubMed  Google Scholar 

  43. Agnello F, Roy C, Bazille G, et al. Small solid renal masses: characterization by diffusion-weighted MRI at 3 T. Clin Radiol. 2013;68:301–8.

    Article  Google Scholar 

  44. Lanzman RS, Robson PM, Sun MR, et al. Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology. 2012;265:799–808.

    Article  PubMed  Google Scholar 

  45. Thomsen HS, Marckmann P, Logager VB. Update on nephrogenic systemic fibrosis. Magn Reson Imaging Clin N Am. 2008;16:551–60.

    Article  PubMed  Google Scholar 

  46. Thomsen HS, Morcos SK, Almen T, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2013;23:307–18.

    Article  PubMed  Google Scholar 

  47. Kaewlai R, Abujudeh H. Nephrogenic systemic fibrosis. AJR Am J Roentgenol. 2012;199:17–23.

    Article  Google Scholar 

  48. Rioja J, Rodriguez-Fraile M, Lima-Favaretto R, et al. Role of positron emission tomography in urological oncology. BJU Int. 2010;106:1578–93.

    Article  PubMed  Google Scholar 

  49. Aide N, Cappele O, Bottet P, et al. Efficiency of [(18)F]FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003;30:1236–45.

    Article  PubMed  Google Scholar 

  50. Ho CL, Chen S, Ho KM, et al. Dual-tracer PET/CT in renal angiomyolipoma and subtypes of renal cell carcinoma. Clin Nucl Med. 2012;37:1075–82.

    Article  PubMed  Google Scholar 

  51. Divgi CR, Uzzo RG, Gatsonis C, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2013;31:187–94. This study evaluates the use of the radioactively labelled antibody 124I-girentuximab in PET-CT for the differentiation of ccRCC.

    Article  PubMed  Google Scholar 

  52. Xu ZF, Xu HX, Xie XY, et al. Renal cell carcinoma and renal angiomyolipoma differential diagnosis with real-time contrast-enhanced ultrasonography. J Ultrasound Med. 2010;29:709–17.

    PubMed  Google Scholar 

  53. Jinzaki M, Ohkuma K, Tanimoto A, et al. Small solid renal lesions: usefulness of power Doppler US. Radiology. 1998;209:543–50.

    CAS  PubMed  Google Scholar 

  54. Houtzager S, Wijkstra H, de la Rosette JJ, Laguna MP. Evaluation of renal masses with contrast-enhanced ultrasound. Curr Urol Rep. 2013;14:116–23.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson SR, Burns PN. Microbubble-enhanced US in body imaging: what role? Radiology. 2010;257:24–39.

    Article  PubMed  Google Scholar 

  56. Lu Q, Wang WP, Huang BJ, Li CL, Li C. Minimal fat renal angiomyolipoma: the initial study with contrast-enhanced ultrasonography. Ultrasound Med Biol. 2012;38:1896–901.

    Article  PubMed  Google Scholar 

  57. Ignee A, Straub B, Brix D, et al. The value of contrast enhanced ultrasound (CEUS) in the characterisation of patients with renal masses. Clin Hemorheol Microcirc. 2010;46:275–90.

    PubMed  Google Scholar 

  58. Tan S, Ozcan MF, Tezcan F, et al. Real-time elastography for distinguishing angiomyolipoma from renal cell carcinoma: preliminary observations. AJR Am J Roentgenol. 2013;200:369–75.

    Article  Google Scholar 

  59. Chawla SN, Crispen PL, Hanlon AL, et al. The natural history of observed enhancing renal masses: meta-analysis and review of the world literature. J Urol. 2006;175:425–31.

    Article  PubMed  Google Scholar 

  60. Smaldone MC, Kutikov A, Egleston BL, et al. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer. 2012;118:997–1006. A systematic review and pooled analysis of studies on SRMs under AS. Pooled analysis included six series with a total of 284 SRMs.

    Article  PubMed  Google Scholar 

  61. Smaldone MC, Kutikov A, Egleston BL, et al. Small renal masses progressing to metastases under active surveillance: a systematic review and pooled analysis. Cancer. 2012;118:997–1006.

    Article  PubMed  Google Scholar 

  62. Mason RJ, Abdolell M, Trottier G, et al. Growth kinetics of renal masses: analysis of a prospective cohort of patients undergoing active surveillance. Eur Urol. 2011;59:863–7.

    Article  PubMed  Google Scholar 

  63. Pierorazio P, McKiernan J, Allaf M. Delayed Intervention and Surveillance for Small Renal Masses: Update from a prospective registry of active surveillance [abstract 1067]. Presented at the 2013 AUA-meeting. San Diego, United States; May 4–8, 2013. This abstract presents result from the multi-institutional DISSRM-registry following consultation and choice of AS or intervention in patients with SRMs.

  64. Crispen PL, Viterbo R, Boorjian SA, et al. Natural history, growth kinetics, and outcomes of untreated clinically localized renal tumors under active surveillance. Cancer. 2009;115:2844–52. This study approaches tumour growth in terms of volume instead of largest diameter, in order to more accurately represent tumour load.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Peter G.K. Wagstaff, Dr. Patricia J. Zondervan, Dr. Jean J.M.C.H. de la Rosette, and Dr. M. Pilar Laguna each declare no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Laguna.

Additional information

This article is part of the Topical Collection on New Imaging Techniques

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagstaff, P.G.K., Zondervan, P.J., de la Rosette, J.J.M.C.H. et al. The Role of Imaging in the Active Surveillance of Small Renal Masses. Curr Urol Rep 15, 386 (2014). https://doi.org/10.1007/s11934-013-0386-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-013-0386-x

Keywords

Navigation