Skip to main content

Advertisement

Log in

Regeneration and Bioengineering of the Kidney: Current Status and Future Challenges

  • Kidney Diseases (G Ciancio, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The prevalence of chronic kidney disease continues to outpace the development of effective treatment strategies. For patients with advanced disease, renal replacement therapies approximate the filtration functions of the kidney at considerable cost and inconvenience, while failing to restore the resorptive and endocrine functions. Allogeneic transplantation remains the only restorative treatment, but donor shortage, surgical morbidity and the need for lifelong immunosuppression significantly limit clinical application. Emerging technologies in the fields of regenerative medicine and tissue engineering strive to address these limitations. We review recent advances in cell-based therapies, primordial allografts, bio-artificial organs and whole-organ bioengineering as they apply to renal regeneration. Collaborative efforts across these fields aim to produce a bioengineered kidney capable of restoring renal function in patients with end-stage disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Peralta CA et al. Control of hypertension in adults with chronic kidney disease in the United States. Hypertension. 2005;45(6):1119–24.

    CAS  PubMed  Google Scholar 

  2. Sarafidis PA et al. Hypertension awareness, treatment, and control in chronic kidney disease. Am J Med. 2008;121(4):332–40.

    PubMed  Google Scholar 

  3. Tonelli M et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–47.

    PubMed  Google Scholar 

  4. Guild WR et al. Successful homotransplantation of the kidney in an identical twin. Trans Am Clin Climatol Assoc. 1955;67:167–73.

    PubMed  Google Scholar 

  5. Jassal SV et al. Kidney transplantation in the elderly: a decision analysis. J Am Soc Nephrol. 2003;14(1):187–96.

    PubMed  Google Scholar 

  6. Laupacis A et al. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 1996;50(1):235–42.

    CAS  PubMed  Google Scholar 

  7. Oliver J. Correlations of structure and function and mechanisms of recovery in acute tubular necrosis. Am J Med. 1953;15(4):535–57.

    CAS  PubMed  Google Scholar 

  8. Cuppage FE, Tate A. Repair of the nephron following injury with mercuric chloride. Am J Pathol. 1967;51(3):405–29.

    CAS  PubMed  Google Scholar 

  9. Haagsma BH, Pound AW. Mercuric chloride-induced tubulonecrosis in the rat kidney: the recovery phase. Br J Exp Pathol. 1980;61(3):229–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Nony P, Boissel JP. Use of sensitivity functions to characterise and compare the forgiveness of drugs. Clin Pharmacokinet. 2002;41(5):371–80.

    CAS  PubMed  Google Scholar 

  11. Pawar S, Kartha S, Toback FG. Differential gene expression in migrating renal epithelial cells after wounding. J Cell Physiol. 1995;165(3):556–65.

    CAS  PubMed  Google Scholar 

  12. Counts RS et al. Nephrotoxicant inhibition of renal proximal tubule cell regeneration. Am J Physiol. 1995;269(2 Pt 2):F274–81.

    CAS  PubMed  Google Scholar 

  13. Kawaida K et al. Hepatocyte growth factor prevents acute renal failure and accelerates renal regeneration in mice. Proc Natl Acad Sci U S A. 1994;91(10):4357–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Ichimura T et al. FGF-1 in normal and regenerating kidney: expression in mononuclear, interstitial, and regenerating epithelial cells. Am J Physiol. 1995;269(5 Pt 2):F653–62.

    CAS  PubMed  Google Scholar 

  15. Haq M et al. Role of IL-1 in renal ischemic reperfusion injury. J Am Soc Nephrol. 1998;9(4):614–9.

    CAS  PubMed  Google Scholar 

  16. Nowak G, Schnellmann RG. Renal cell regeneration following oxidant exposure: inhibition by TGF-beta1 and stimulation by ascorbic acid. Toxicol Appl Pharmacol. 1997;145(1):175–83.

    CAS  PubMed  Google Scholar 

  17. Grobstein C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953;172(4384):869–70.

    CAS  PubMed  Google Scholar 

  18. Grobstein C. Inductive epitheliomesenchymal interaction in cultured organ rudiments of the mouse. Science. 1953;118(3054):52–5.

    CAS  PubMed  Google Scholar 

  19. Grobstein C. Trans-filter induction of tubules in mouse metanephrogenic mesenchyme. Exp Cell Res. 1956;10(2):424–40.

    CAS  PubMed  Google Scholar 

  20. Grobstein C. Inductive tissue interaction in development. Adv Cancer Res. 1956;4:187–236.

    CAS  PubMed  Google Scholar 

  21. Kitamura S et al. Establishment and characterization of renal progenitor like cells from S3 segment of nephron in rat adult kidney. FASEB J. 2005;19(13):1789–97.

    CAS  PubMed  Google Scholar 

  22. Lindgren D et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol. 2011;178(2):828–37.

    PubMed  Google Scholar 

  23. Maeshima A, Yamashita S, Nojima Y. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J Am Soc Nephrol. 2003;14(12):3138–46.

    PubMed  Google Scholar 

  24. Sagrinati C et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol. 2006;17(9):2443–56.

    CAS  PubMed  Google Scholar 

  25. Oliver JA et al. The renal papilla is a niche for adult kidney stem cells. J Clin Invest. 2004;114(6):795–804.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Kobayashi A, Valerius MT, Mugford JW, et al. Pax2 maintains a selfrenewing nephron progenitor population by repressing interstitial cell fates during mammalian kidney development. San Diego: 2009 American Society of Nephrology Meeting; 2009.

    Google Scholar 

  27. Kobayashi A et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3(2):169–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Self M et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25(21):5214–28.

    CAS  PubMed  Google Scholar 

  29. Bussolati B et al. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005;166(2):545–55.

    CAS  PubMed  Google Scholar 

  30. Ronconi E et al. Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol. 2009;20(2):322–32.

    CAS  PubMed  Google Scholar 

  31. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8. First, groundbreaking report on the isolation of embryonic stem cells in mice. This paper came out almost at the same time as another paper from Evans and Kaufman..

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Mae S et al. Combination of small molecules enhances differentiation of mouse embryonic stem cells into intermediate mesoderm through BMP7-positive cells. Biochem Biophys Res Commun. 2010;393(4):877–82.

    CAS  PubMed  Google Scholar 

  33. Schuldiner M et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A. 2000;97(21):11307–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kim D, Dressler GR. Nephrogenic factors promote differentiation of mouse embryonic stem cells into renal epithelia. J Am Soc Nephrol. 2005;16(12):3527–34.

    CAS  PubMed  Google Scholar 

  35. Vigneau C et al. Mouse embryonic stem cell-derived embryoid bodies generate progenitors that integrate long term into renal proximal tubules in vivo. J Am Soc Nephrol. 2007;18(6):1709–20.

    CAS  PubMed  Google Scholar 

  36. Kobayashi T et al. Wnt4-transformed mouse embryonic stem cells differentiate into renal tubular cells. Biochem Biophys Res Commun. 2005;336(2):585–95.

    CAS  PubMed  Google Scholar 

  37. Reubinoff BE et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol. 2000;18(4):399–404.

    CAS  PubMed  Google Scholar 

  38. Steenhard BM et al. Integration of embryonic stem cells in metanephric kidney organ culture. J Am Soc Nephrol. 2005;16(6):1623–31.

    CAS  PubMed  Google Scholar 

  39. Fang TC et al. Exogenous bone marrow cells do not rescue non-irradiated mice from acute renal tubular damage caused by HgCl2, despite establishment of chimaerism and cell proliferation in bone marrow and spleen. Cell Prolif. 2008;41(4):592–606.

    CAS  PubMed  Google Scholar 

  40. Poulsom R et al. Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol. 2001;195(2):229–35.

    CAS  PubMed  Google Scholar 

  41. Hayakawa M et al. Role of bone marrow cells in the healing process of mouse experimental glomerulonephritis. Pediatr Res. 2005;58(2):323–8.

    PubMed  Google Scholar 

  42. Burdon TJ et al. Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res. 2011;2011:207326.

    PubMed Central  PubMed  Google Scholar 

  43. Camussi G, Deregibus MC, Tetta C. Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens. 2010;19(1):7–12.

    CAS  PubMed  Google Scholar 

  44. He J et al. Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton). 2012;17(5):493–500.

    Google Scholar 

  45. Ikarashi K et al. Bone marrow cells contribute to regeneration of damaged glomerular endothelial cells. Kidney Int. 2005;67(5):1925–33.

    CAS  PubMed  Google Scholar 

  46. Ito T et al. Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol. 2001;12(12):2625–35.

    CAS  PubMed  Google Scholar 

  47. Li J et al. The contribution of bone marrow-derived cells to the development of renal interstitial fibrosis. Stem Cells. 2007;25(3):697–706.

    CAS  PubMed  Google Scholar 

  48. Lindoso RS et al. Paracrine interaction between bone marrow-derived stem cells and renal epithelial cells. Cell Physiol Biochem. 2011;28(2):267–78.

    CAS  PubMed  Google Scholar 

  49. Masuya M et al. Hematopoietic origin of glomerular mesangial cells. Blood. 2003;101(6):2215–8.

    CAS  PubMed  Google Scholar 

  50. McTaggart SJ, Atkinson K. Mesenchymal stem cells: immunobiology and therapeutic potential in kidney disease. Nephrology (Carlton). 2007;12(1):44–52.

    CAS  Google Scholar 

  51. Perry J et al. Type IV collagen induces podocytic features in bone marrow stromal stem cells in vitro. J Am Soc Nephrol. 2006;17(1):66–76.

    CAS  PubMed  Google Scholar 

  52. Prodromidi EI et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells. 2006;24(11):2448–55.

    CAS  PubMed  Google Scholar 

  53. Qian H et al. Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. Int J Mol Med. 2008;22(3):325–32.

    PubMed  Google Scholar 

  54. Reis LA et al. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS One. 2012;7(9):e44092.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Rookmaaker MB et al. Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis. Am J Pathol. 2003;163(2):553–62.

    PubMed  Google Scholar 

  56. Sugimoto H et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A. 2006;103(19):7321–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Suzuki A et al. Platelet-derived growth factor plays a critical role to convert bone marrow cells into glomerular mesangial-like cells. Kidney Int. 2004;65(1):15–24.

    CAS  PubMed  Google Scholar 

  58. Togel F et al. VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med. 2009;13(8B):2109–14.

    PubMed  Google Scholar 

  59. Yadav N et al. Bone marrow cells contribute to tubular epithelium regeneration following acute kidney injury induced by mercuric chloride. Indian J Med Res. 2012;136(2):211–20.

    CAS  PubMed  Google Scholar 

  60. Perin L et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40(6):936–48.

    CAS  PubMed  Google Scholar 

  61. Rota C et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 2012;21(11):1911–23.

    CAS  PubMed  Google Scholar 

  62. Siegel N et al. Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Hum Mol Genet. 2010;19(17):3320–31.

    CAS  PubMed  Google Scholar 

  63. Hauser PV et al. Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol. 2010;177(4):2011–21.

    PubMed  Google Scholar 

  64. Polo JM et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28(8):848–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Song B et al. Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol. 2011;22(7):1213–20.

    CAS  PubMed  Google Scholar 

  66. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  PubMed  Google Scholar 

  67. Zhao T et al. Immunogenicity of induced pluripotent stem cells. Nature. 2011;474(7350):212–5.

    CAS  PubMed  Google Scholar 

  68. Zhou T et al. Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol. 2011;22(7):1221–8.

    PubMed  Google Scholar 

  69. Bratt-Leal AM, Carpenedo RL, McDevitt TC. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol Prog. 2009;25(1):43–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Blum B et al. The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol. 2009;27(3):281–7.

    CAS  PubMed  Google Scholar 

  71. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells. 2007;25(11):2896–902.

    PubMed  Google Scholar 

  72. Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol. 2010;21(7):1218–22.

    PubMed  Google Scholar 

  73. Woolf AS et al. Creation of a functioning chimeric mammalian kidney. Kidney Int. 1990;38(5):991–7.

    CAS  PubMed  Google Scholar 

  74. Rogers SA et al. Transplantation of developing metanephroi into adult rats. Kidney Int. 1998;54(1):27–37.

    CAS  PubMed  Google Scholar 

  75. Statter MB et al. Correlation of fetal kidney and testis congenic graft survival with reduced major histocompatibility complex burden. Transplantation. 1989;47(4):651–60.

    CAS  PubMed  Google Scholar 

  76. Abrahamson DR et al. Glomerular development in intraocular and intrarenal grafts of fetal kidneys. Lab Invest. 1991;64(5):629–39.

    CAS  PubMed  Google Scholar 

  77. Samstein B, Platt JL. Physiologic and immunologic hurdles to xenotransplantation. J Am Soc Nephrol. 2001;12(1):182–93.

    CAS  PubMed  Google Scholar 

  78. Dai Y et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol. 2002;20(3):251–5.

    CAS  PubMed  Google Scholar 

  79. Cascalho M, Platt JL. Xenotransplantation and other means of organ replacement. Nat Rev Immunol. 2001;1(2):154–60.

    CAS  PubMed  Google Scholar 

  80. Rogers SA, Talcott M, Hammerman MR. Transplantation of pig metanephroi. ASAIO J. 2003;49(1):48–52.

    PubMed  Google Scholar 

  81. Dekel B et al. Engraftment and differentiation of human metanephroi into functional mature nephrons after transplantation into mice is accompanied by a profile of gene expression similar to normal human kidney development. J Am Soc Nephrol. 2002;13(4):977–90.

    CAS  PubMed  Google Scholar 

  82. Hammerman MR. Renal organogenesis from transplanted metanephric primordia. J Am Soc Nephrol. 2004;15(5):1126–32.

    PubMed  Google Scholar 

  83. Steer DL et al. A strategy for in vitro propagation of rat nephrons. Kidney Int. 2002;62(6):1958–65.

    PubMed  Google Scholar 

  84. Rosines E et al. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney. Tissue Eng Part A. 2010;16(8):2441–55. Pioneering paper in which renal bioengineering is attempted through a developmental biology approach in which the ureteric bud is manipulated to obtain kidney-like structures..

    CAS  PubMed  Google Scholar 

  85. Xinaris C et al. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol. 2012;23(11):1857–68.

    PubMed  Google Scholar 

  86. Tasnim F et al. Achievements and challenges in bioartificial kidney development. Fibrogenesis Tissue Repair. 2010;3:14.

    PubMed Central  PubMed  Google Scholar 

  87. Aebischer P et al. The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst. 1987;5(2):159–68.

    CAS  PubMed  Google Scholar 

  88. Humes HD et al. Initial clinical results of the bioartificial kidney containing human cells in ICU patients with acute renal failure. Kidney Int. 2004;66(4):1578–88.

    CAS  PubMed  Google Scholar 

  89. Tumlin J et al. Efficacy and safety of renal tubule cell therapy for acute renal failure. J Am Soc Nephrol. 2008;19(5):1034–40.

    PubMed  Google Scholar 

  90. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982;99(1):31–68.

    CAS  PubMed  Google Scholar 

  91. Lelongt B, Ronco P. Role of extracellular matrix in kidney development and repair. Pediatr Nephrol. 2003;18(8):731–42.

    PubMed  Google Scholar 

  92. Muller U et al. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 1997;88(5):603–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1358–73.

    CAS  PubMed  Google Scholar 

  94. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med. 2011;17(8):424–32.

    CAS  PubMed  Google Scholar 

  95. Orlando G et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int. 2011;24(3):223–32.

    PubMed  Google Scholar 

  96. Orlando G et al. Regenerative medicine and organ transplantation: past, present, and future. Transplantation. 2011;91(12):1310–7.

    PubMed  Google Scholar 

  97. Orlando G et al. Regenerative medicine as applied to general surgery. Ann Surg. 2012;255(5):867–80.

    PubMed Central  PubMed  Google Scholar 

  98. Badylak SF et al. Engineered whole organs and complex tissues. Lancet. 2012;379(9819):943–52. Seminal review on the cell-scaffold technology which seems to offer the most promising approach to renal bioengineering, while granting the quickest route to clinical application..

    PubMed  Google Scholar 

  99. Orlando G et al. Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Ann Surg. 2012;256(2):363–70. Seminal study providing evidence that porcine kidneys can be decellularized to produce acellular scaffolds. Such scaffolds represent an ideal platform for renal bioengineering investigations..

    PubMed  Google Scholar 

  100. Wang Y et al. Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology. 2011;53(1):293–305.

    CAS  PubMed  Google Scholar 

  101. Ross EA et al. Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol. 2009;20(11):2338–47.

    PubMed  Google Scholar 

  102. Ng SL et al. Lineage restricted progenitors for the repopulation of decellularized heart. Biomaterials. 2011;32(30):7571–80.

    CAS  PubMed  Google Scholar 

  103. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13:27–53.

    CAS  PubMed  Google Scholar 

  105. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–83.

    CAS  PubMed  Google Scholar 

  106. Crapo PM et al. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012;33(13):3539–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol. 2008;20(2):109–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Brown BN et al. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009;30(8):1482–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Reing JE et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010;31(33):8626–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Brown B et al. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 2006;12(3):519–26.

    CAS  PubMed  Google Scholar 

  111. Baptista PM et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011;53(2):604–17.

    CAS  PubMed  Google Scholar 

  112. Song JJ et al. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg. 2011;92(3):998–1005. discussion 1005–6.

    PubMed  Google Scholar 

  113. Martinello, T., et al., Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. J Tissue Eng Regen Med, 2012

  114. Honge JL et al. Recellularization of aortic valves in pigs. Eur J Cardiothorac Surg. 2011;39(6):829–34.

    PubMed  Google Scholar 

  115. Loai Y et al. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A. 2010;94(4):1205–15.

    PubMed  Google Scholar 

  116. Wicha MS et al. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proc Natl Acad Sci U S A. 1982;79(10):3213–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Liu CX et al. Preparation of whole-kidney acellular matrix in rats by perfusion. Nan Fang Yi Ke Da Xue Xue Bao. 2009;29(5):979–82.

    PubMed  Google Scholar 

  118. Nakayama KH et al. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A. 2010;16(7):2207–16.

    CAS  PubMed  Google Scholar 

  119. Sullivan DC et al. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012;33(31):7756–64.

    CAS  PubMed  Google Scholar 

  120. Narlis M et al. Pax2 and pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J Am Soc Nephrol. 2007;18(4):1121–9.

    CAS  PubMed  Google Scholar 

  121. Shao X et al. A minimal Ksp-cadherin promoter linked to a green fluorescent protein reporter gene exhibits tissue-specific expression in the developing kidney and genitourinary tract. J Am Soc Nephrol. 2002;13(7):1824–36.

    CAS  PubMed  Google Scholar 

  122. Gupta S et al. Isolation and characterization of kidney-derived stem cells. J Am Soc Nephrol. 2006;17(11):3028–40.

    CAS  PubMed  Google Scholar 

  123. Bagetti Filho HJ et al. Pig kidney: anatomical relationships between the renal venous arrangement and the kidney collecting system. J Urol. 2008;179(4):1627–30.

    PubMed  Google Scholar 

  124. Al-Awqati Q, Oliver JA. Stem cells in the kidney. Kidney Int. 2002;61(2):387–95.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Marcus Salvatori, Dr. Andrea Peloso, Dr. Ravi Katari, and Dr. Giuseppe Orlando reported no potential conflicts of interest relevant to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Orlando.

Additional information

This article is part of the Topical Collection on Kidney Diseases

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvatori, M., Peloso, A., Katari, R. et al. Regeneration and Bioengineering of the Kidney: Current Status and Future Challenges. Curr Urol Rep 15, 379 (2014). https://doi.org/10.1007/s11934-013-0379-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-013-0379-9

Keywords

Navigation