Skip to main content

Advertisement

Log in

Update on Tissue Engineering in Pediatric Urology

  • Pediatric Urology (M Castellan and R Gosalbez, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Pediatric urology patients often present with congenital or acquired tissue and organ dysfunction that requires surgical reconstruction to recreate the normal genitourinary systems functions. The traditional methods have varying degrees of donor site morbidity or inherent side effects. Tissue engineering is a developing field that aims to replace or regenerate these dysfunctional tissues and organs with cells, biomaterials, or a combination thereof. A tremendous amount of work has been done to these ends in terms of preclinical work, and some clinical trials have resulted. This review highlights the status of these studies in pediatric urology for the use of tissue engineering and reconstruction of the corporal bodies, urethra, and bladder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAMG:

Biodimensional Anisotropic Mesh Generator

CBG:

Corporal Body Grafting

PGA:

Polyglycolic Acid

SIS:

Small Intestinal Submucosa

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bohne A, Osborn R, Hettle P. Regeneration of the urinary bladder in the dog, following total cystectomy. Surg Gynecol Obstet. 1955;100:259–64.

    PubMed  CAS  Google Scholar 

  2. Kurdish H. The use of polyvinyl sponge for experimental cystoplasty. J Urol. 1957;78:232.

    Google Scholar 

  3. Swinney J, Walden D. Urinary tract substitution. Br J Urol. 1961;33:414–27.

    Article  Google Scholar 

  4. Agishi T, Nakazona M, Kiraly R, et al. Biodegradable material for bladder reconstruction. J Biomed Mater Res. 1975;9:119–31.

    Article  PubMed  CAS  Google Scholar 

  5. Scott R, Mohammed R, Garham S, et al. The evolution of a biodegradable membrane for use in urological surgery. A summary of 109 in vivo experiments. Br J Urol. 1988;62:26–31.

    Article  PubMed  CAS  Google Scholar 

  6. Matoka D, Cheng E. Tissue engineering in urology. Can Urol Assoc J. 2009;3(5):403–8.

    PubMed  Google Scholar 

  7. Wolter JR, Meyer RF. Sessile macrophages forming clear endothelium-like membrane on the inside of successful keratoprosthesis. Graefes Arch Clin Exp Ophthalmol. 1985;222:109–17.

    Article  PubMed  CAS  Google Scholar 

  8. Fisher MB, Mauck RL. Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition to Translation. Tissue Engineering: Part B. 2013;19(1):1–13.

    Article  CAS  Google Scholar 

  9. Roth C, Kropp B. Recent advances in urologic tissue engineering. Current Urology Reports. 2009;10:119–25.

    Article  PubMed  Google Scholar 

  10. Olson JL, Atala A, Yoo J. Tissue engineering: current strategies and future directions. Chonnam Med J. 2011;47:1–13.

    Article  PubMed  CAS  Google Scholar 

  11. Hollander A. Cell therapies and regenerative medicine – the dawn of a new age or more hype than hope? Clinical and Translational Medicine. 2012;1:12.

    Article  PubMed  Google Scholar 

  12. Oerlemans A, Feitz W, Van Leeuwen E, Dekkers W. Regenerative Urology Clinical Trials: An Ethical Assessment of Road Blocks and Solutions. Tissue Engineering: Part B. 2013;19(1):41–7.

    Article  CAS  Google Scholar 

  13. Wiesmann HP, Meyer U. Biomaterials. In Meyer U, Meyer T, Handschel J, Weismann HP eds. Fundamentals of tissue engineering and regenerative medicine. Chapt 34. 457–68: Springer-Verlag, Berlin Heidelberg, 2009.

  14. • Wezel F, Southgate J, Thomas D. Regernative medicine in urology. BJU Int. 2011;108:1046–65. This review illustrates the basic science processes in regenerative medicine and tissue engineering and outlines the need and process for use of these technologies in urology.

    Article  PubMed  CAS  Google Scholar 

Corporal Body Grafting

  1. •• Kropp B, Cheng E, Pope IV J, Brock III J, Koyle M, Furness P, et al. Use of small intestinal submucosa for corporal body grafting in cases of severe penile curvature. J Urology. 2002;168:1742–5. This multi-institution trial established the use of tissue engineering as a substitute for the previous gold standard approach for corporal body grafting using an ‘off the shelf’ biomaterial that has become widely utilized.

    Article  Google Scholar 

  2. Soergel T, Cain M, Kaefer M, Gitlin J, Casale A, Davis M, et al. Complications of small intestinal submucosa for corporal body grafting for proximal hypospadias. J Urology. 2003;170:1577–9.

    Article  Google Scholar 

  3. Weiser A, Franco I, Herz D, Silver R, Reda E. Single layered small intestinal submucosa in the repair of severe chordee and complicated hypospadias. J Urology. 2003;170:1593–5.

    Article  Google Scholar 

  4. Elmore J, Kirsch A, Scherz H, Smith E. Small intestinal submucosa for corporeal body grafting in severe hypospadias requiring division of the urethral plate. J Urology. 2007;178:1698–701.

    Article  Google Scholar 

  5. Leslie J, Cain M, Kaefer M, Meldrum K, Misseri R, Rink R. Corporeal grafting for severe hypospadias: a single institution experience with 3 techniques. J Urology. 2008;180:1749–52.

    Article  Google Scholar 

  6. Hayn M, Bellinger M, Schneck F. Small intestine submucosa as a corporal body graft in the repair of severe chordee. Urology. 2009;73:277–9.

    Article  PubMed  Google Scholar 

  7. Castellan M, Gosalbez R, Devendra J, Bar-Yusel Y, Labbie A. J Ventral corporal body grafting for correcting severe penile curvature associated with single or two-stage hypospadias repair. Pediatric Urology. 2011;7:289–93.

    Article  Google Scholar 

Urethra

  1. Kropp BP, Ludlow JK, Spicer D, et al. Rabbit urethral regeneration using small intestinal submucosa onlay grafts. Urology. 1998;52:138–42.

    Article  PubMed  CAS  Google Scholar 

  2. Chen F, Yoo J, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology. 1999;54:407–10.

    Article  PubMed  CAS  Google Scholar 

  3. Olsen L, Bowald S, Busch C, et al. Urethral reconstruction with a new synthetic absorbable device. An experimental study. Scand J Urol Nephrol. 1992;26:323–6.

    Article  PubMed  CAS  Google Scholar 

  4. Sievert KD, Bakircioglu ME, Nunes L, et al. Homologous acellular matrix graft for urethral reconstruction in the rabbit: histological and functional evaluation. J Urol. 2000;163:1958–65.

    Article  PubMed  CAS  Google Scholar 

  5. Dorin R, Phol H, De Filippo R, Yoo J, Atala A. Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol. 2008;26:323–6.

    Article  PubMed  Google Scholar 

  6. De Filippo R, Yoo J, Atala A. Urehtral replacement using cell seeded tubularized collagen matrices. J Urology. 2002;168:1789–92.

    Article  Google Scholar 

  7. Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU. 2007;99:1162–5.

    Article  Google Scholar 

  8. Orabi H, AbouShwareb, Zhang Y, Yoo J, Atala A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol. 2013;63:531–8.

    Article  PubMed  Google Scholar 

  9. Atala A, Guzman L, Retik A. A novel inert collagen matrix for hypospadias repair. J Urology. 1999;162:1148–51.

    Article  CAS  Google Scholar 

  10. El-Kassaby AW, Retik AB, Yoo JJ, Atala A. Urethral stricture repair with an off-the-shelf collagen matrix. J Urology. 2003;169:170–3.

    Article  CAS  Google Scholar 

  11. El-Kassaby AW, AbouShwareb T, Atala A. Randomized comparative study between buccal mucosal and acellular bladder matrix grafts in complex anterior urethral strictures. J Urology. 2008;179:1432–6.

    Article  Google Scholar 

  12. Hauser S, Bastian P, Fechner G, Muller S. Small intestine submucosa in urethral stricture repair in a consecutive series. Urology. 2006;68:263–6.

    Article  PubMed  Google Scholar 

  13. Palminteri E, Berdondini E, Colombo F, Austoni E. Small intestinal submucosa (SIS) graft urethroplasty: short term results. Eur Urol. 2007;51:1695–701.

    Article  PubMed  Google Scholar 

  14. Fiala R, Vidlar A, Vrtal R, Belej K, Student V. Porcine small intestinal submucosa graft for repair of anterior urethral stricture. Eur Urol. 2007;51:1702–8.

    Article  PubMed  Google Scholar 

  15. Atala A. (2011). Regenerative medicine in urology: stem cells, tissue engineering and cloning. In Kavoussi L, Novick A, Partin A, Peters C. Editors (10th Eds.), Campbell-Walsh Urology (Chap 19) Philadelphia: Elsevier-Saunders.

  16. Bhargava S, Patterson J, Inman D, MacNeil S, Chapple C. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol. 2008;53:1263–71.

    Article  PubMed  Google Scholar 

  17. Fossum M, Svensson J, Kratz G, Nordenskjold A. Autologous in vitro cultured urothelium in hypospadias repair. J Pediatric Urology. 2007;3:10–8.

    Article  CAS  Google Scholar 

  18. Fossum M, Skikuniene J, Orrego A, Nordenskold A. Prepubertal follow-up after hypospadias repair with autologous in vitro cultured urothelial cells. Acta Pediatrica. 2012;101:755–60.

    Article  Google Scholar 

  19. Le Roux P. Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix graft: a pilot study. J Urol. 2005;173:140–3.

    Article  PubMed  Google Scholar 

  20. •• Raya-Rivera A, Esquiliano D, Yoo J, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82. This investigative clinical trial shows the ability to use bladder smooth muscle and urothelium cells co-seeded on a tubularized biomaterial scaffold for urethral replacement of long defects in children.

    Article  PubMed  Google Scholar 

Bladder

  1. Kropp BP, Cheng EY. Bladder augmentation: current and future techniques. In: Docimo SG, Canning DA, Khoury AE, editors. Clinical Pediatric Urology. London: Informa; 2007. p. 871–910.

    Google Scholar 

  2. Schaefer BM, Lorenz C, Back W, Moll R, Sun TT, Schober C, et al. Autologous transplantation of urothelium into demucosalized gastrointestinal segments: evidence for epithelialization and differentiation of in vitro expanded and transplanted urothelial cells. J Urol. 1998;159:284–90.

    Article  PubMed  CAS  Google Scholar 

  3. Turner A, Subramanian R, Thomas DF, et al. Transplantation of autologous differentiated urothelium in an experimental model of composite cystoplasty. Eur Urol. 2011;59:447–54.

    Article  PubMed  Google Scholar 

  4. Fraser M, Thomas DF, Pitt E, Harnden P, Trejdosiewicz LK, Southgate J. A surgical model of composite cystoplasty with cultured urothelial cells: a controlled study of gross outcome and urothelial phenotype. BJU Int. 2004;93:609–16.

    Article  PubMed  CAS  Google Scholar 

  5. Kropp BP, Sawyer BD, Shannon HE, et al. Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J Urol. 1996;156:599–607.

    Article  PubMed  CAS  Google Scholar 

  6. Dahms S, Piechota HJ, Dahiya R, Lue TF, Tanagho EA. Composition and biomechanical properties of the bladder acellular matrix graft: comparative analysis in rat, pig and human. BJU. 1998;82:411–9.

    Article  PubMed  CAS  Google Scholar 

  7. Chen BS, Zhang S, Geng H, Pan J, Chen F. Ex vivo functional evaluation of isolated strips of BAMG tissue engineered bladders. Int J Artif Organs. 2009;32:159–65.

    PubMed  CAS  Google Scholar 

  8. Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006;98:1100–5.

    Article  PubMed  Google Scholar 

  9. Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodriguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials. 2009;30:3259–70.

    Article  PubMed  CAS  Google Scholar 

  10. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    PubMed  CAS  Google Scholar 

  11. Kimuli M, Eardley I, Southgate J. In vitro assessment of decellularized porcine dermis as a matrix for urinary tract reconstruction. BJU Int. 2004;94:859–66.

    Article  PubMed  Google Scholar 

  12. Oberpenning F, Meng J, Yoo JJ, Atala A. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol. 1999;17:149–55.

    Article  PubMed  CAS  Google Scholar 

  13. Jayo MJ, Jain D, Ludlow JW, et al. Long-term durability, tissue regeneration and neo-organ growth during skeletal maturation with a neo-bladder augmentation construct. Regen Med. 2008;3:671–82.

    Article  PubMed  Google Scholar 

  14. Tanaka ST, Thangappan R, Eandi JA, Leung KN, Kurzrock EA. Bladder wall transplantation – long-term survival of cells: implications for bioengineering and clinical application. Tissue Eng Part A. 2010;16:2121–7.

    Article  PubMed  CAS  Google Scholar 

  15. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder subucosa seeded with cells. Urology. 1998;51:221–5.

    Article  PubMed  CAS  Google Scholar 

  16. • Atala A, Bauer S, Soker S, Yoo J, Retik A. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367:1241–6. The first clinical application of tissue engineered bladder augmentation model with limited success but illustrates the potential applications.

    Article  PubMed  Google Scholar 

  17. Lin HK, Cowan R, Moore P, et al. Characterization of neuropathic bladder smooth muscle cells in culture. J Urol. 2004;171:1348–52.

    Article  PubMed  Google Scholar 

  18. Subramaniam R, Hinley J, Stahlschmidt J, Southgate J. Tissue engineering potential of urothelial cells from diseased bladders. J Urol. 2011;186:2014–20.

    Article  PubMed  CAS  Google Scholar 

  19. • Sharma A, Bury M, Fuller N, Marks A, Kollhoff D, Rao M, et al. Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. PNAS. 2013;110:2003–8. New work showing potential for autologous bone marrow stem/progenitor cells use as an alternative to autologous native bladder cells in neuropathic bladder patients.

    Google Scholar 

Download references

Disclosure

Dr. Blake W. Palmer reported no potential conflicts of interest relevant to this article. Dr. Bradley P. Kropp reported receiving grants/grants pending from Cook Biotech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley P. Kropp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, B.W., Kropp, B.P. Update on Tissue Engineering in Pediatric Urology. Curr Urol Rep 14, 327–332 (2013). https://doi.org/10.1007/s11934-013-0329-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-013-0329-6

Keywords

Navigation