Skip to main content

Advertisement

Log in

Evaluation of Treatment Response in Patients with Metastatic Renal Cell Carcinoma: Role of State-of-the-Art Cross-Sectional Imaging

  • New Techniques: Imaging (A Atala, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Recent advances in genetics and oncology have led to development of a wide array of molecular therapeutics in the management of patients with metastatic renal cell carcinoma. These drugs have revolutionized the treatment of advanced disease by significantly improving patient outcomes. State-of-the-art cross-sectional imaging techniques play a seminal role in the evaluation of treatment response by providing reproducible, objective data, thereby permitting accurate quantification of tumor burden. Evolving functional imaging techniques such as perfusion and diffusion studies continue to advance the technology beyond assessing changes in tumor size and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353:2477–90.

    Article  PubMed  CAS  Google Scholar 

  2. Ather MH, Masood N, Siddiqui T. Current management of advanced and metastatic renal cell carcinoma. Urol J. 2010;7:1–9.

    PubMed  Google Scholar 

  3. Brugarolas J. Renal-cell carcinoma–molecular pathways and therapies. N Engl J Med. 2007;356:185–7.

    Article  PubMed  CAS  Google Scholar 

  4. Cho D, Signoretti S, Regan M, et al. The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res. 2007;13:758s–63s.

    Article  PubMed  CAS  Google Scholar 

  5. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008;358:2039–49.

    Article  PubMed  CAS  Google Scholar 

  6. Herrmann E, Bierer S, Wulfing C. Update on systemic therapies of metastatic renal cell carcinoma. World J Urol. 2010;28:303–9.

    Article  PubMed  CAS  Google Scholar 

  7. Shanbhogue AK, Karnad AB, Prasad SR. Tumor response evaluation in oncology: current update. J Comput Assist Tomogr. 2010;34:479–84.

    Article  PubMed  Google Scholar 

  8. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  PubMed  CAS  Google Scholar 

  9. van der Veldt AA, Meijerink MR, van den Eertwegh AJ, et al. Targeted therapies in renal cell cancer: recent developments in imaging. Target Oncol. 2010;5:95–112.

    Article  PubMed  Google Scholar 

  10. •• van der Veldt AA, Meijerink MR, van den Eertwegh AJ, et al.: Choi response criteria for early prediction of clinical outcome in patients with metastatic renal cell cancer treated with sunitinib. Br J Cancer 2010;102:803–809. This study demonstrated the drawbacks of RECIST criteria in response evaluation assessment of metastatic RCC to antiangiogenic therapy.

  11. Motzer RJ, Escudier B, Oudard S, et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase iii trial. Lancet. 2008;372:449–56.

    Article  PubMed  CAS  Google Scholar 

  12. Abel EJ, Culp SH, Tannir NM, et al. Primary tumor response to targeted agents in patients with metastatic renal cell carcinoma. Eur Urol. 2011;59:10–5.

    Article  PubMed  Google Scholar 

  13. Thiam R, Fournier LS, Trinquart L, et al. Optimizing the size variation threshold for the CT evaluation of response in metastatic renal cell carcinoma treated with sunitinib. Ann Oncol. 2010;21:936–41.

    Article  PubMed  CAS  Google Scholar 

  14. Krajewski KM, Guo M, Van den Abbeele AD, et al. Comparison of four early posttherapy imaging changes (Eptic; RECIST 1.0, tumor shrinkage, computed tomography tumor density, Choi criteria) in assessing outcome to vascular endothelial growth factor-targeted therapy in patients with advanced renal cell carcinoma. Eur Urol. 2011;59:856–62.

    Article  PubMed  Google Scholar 

  15. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  16. Hittinger M, Staehler M, Schramm N, et al.: Course of size and density of metastatic renal cell carcinoma lesions in the early follow-up of molecular targeted therapy. Urol Oncol 2011.

  17. Nathan PD, Vinayan A, Stott D, et al. CT response assessment combining reduction in both size and arterial phase density correlates with time to progression in metastatic renal cancer patients treated with targeted therapies. Cancer Biol Ther. 2010;9:15–9.

    Article  PubMed  Google Scholar 

  18. Smith AD, Lieber ML, Shah SN. Assessing tumor response and detecting recurrence in metastatic renal cell carcinoma on targeted therapy: importance of size and attenuation on contrast-enhanced CT. AJR Am J Roentgenol. 2010;194:157–65.

    Article  PubMed  Google Scholar 

  19. •• Smith AD, Shah SN, Rini BI, et al.: Morphology, attenuation, size, and structure (MASS) criteria: Assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol 2010;194:1470–1478. This reference proposed the new response evaluation criteria (MASS) for metastatic RCC patients receiving targeted therapies.

  20. Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261:165–71.

    Article  PubMed  Google Scholar 

  21. Kambadakone AR, Sahani DV. Body perfusion CT: technique, clinical applications, and advances. Radiol Clin North Am. 2009;47:161–78.

    Article  PubMed  Google Scholar 

  22. •• Fournier LS, Oudard S, Thiam R, et al.: Metastatic renal carcinoma: Evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 2010;256:511–518. The authors evaluated the role of perfusion CT in early response assessment of metastatic RCC to antiangiogenic therapy.

  23. Chen Y, Zhang J, Dai J, et al. Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging. 2010;35:622–8.

    Article  PubMed  Google Scholar 

  24. Ng CS, Wang X, Faria SC, et al. Perfusion CT in patients with metastatic renal cell carcinoma treated with interferon. AJR Am J Roentgenol. 2010;194:166–71.

    Article  PubMed  Google Scholar 

  25. •• Rosen MA, Schnall MD: Dynamic contrast-enhanced magnetic resonance imaging for assessing tumor vascularity and vascular effects of targeted therapies in renal cell carcinoma. Clin Cancer Res 2007;13:770 s-776s. This reference showed the importance of DCE-MRI in assessing RCC vascularity and vascular effects of targeted therapies.

  26. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17:509–20.

    Article  PubMed  Google Scholar 

  27. Harry VN, Semple SI, Parkin DE, et al. Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol. 2010;11:92–102.

    Article  PubMed  Google Scholar 

  28. Pedrosa I, Alsop DC, Rofsky NM. Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer. 2009;115:2334–45.

    Article  PubMed  Google Scholar 

  29. O'Connor JP, Jackson A, Parker GJ, et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer. 2007;96:189–95.

    Article  PubMed  Google Scholar 

  30. Jackson A, O'Connor JP, Parker GJ, et al. Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res. 2007;13:3449–59.

    Article  PubMed  Google Scholar 

  31. Flaherty KT, Rosen MA, Heitjan DF, et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther. 2008;7:496–501.

    Article  PubMed  CAS  Google Scholar 

  32. Hahn OM, Yang C, Medved M, et al. Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol. 2008;26:4572–8.

    Article  PubMed  CAS  Google Scholar 

  33. Hillman GG, Singh-Gupta V, Al-Bashir AK, et al. Monitoring sunitinib-induced vascular effects to optimize radiotherapy combined with soy isoflavones in murine xenograft tumor. Transl Oncol. 2011;4:110–21.

    PubMed  Google Scholar 

  34. Martirosian P, Boss A, Schraml C, et al. Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S52–64.

    Article  PubMed  Google Scholar 

  35. Pedrosa I, Rafatzand K, Robson P, Wagner AA, Atkins MB, Rofsky NM, Alsop DC: Arterial spin labeling MR imaging for characterisation of renal masses in patients with impaired renal function: initial experience. Eur Radiol 2011.

  36. De Bazelaire C, Rofsky NM, Duhamel G, et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol. 2005;12:347–57.

    Article  PubMed  Google Scholar 

  37. •• de Bazelaire C, Alsop DC, George D, et al.: Magnetic resonance imaging-measured blood flow change after antiangiogenic therapy with PTK 787/zk 222584 correlates with clinical outcome in metastatic renal cell carcinoma. Clin Cancer Res 2008;14:5548–5554. The authors evaluated ASL-MRI in evaluating blood flow change after antiangiogenic therapy to metastatic RCC.

  38. Schor-Bardach R, Alsop DC, Pedrosa I, et al. Does arterial spin-labeling MR imaging-measured tumor perfusion correlate with renal cell cancer response to antiangiogenic therapy in a mouse model? Radiology. 2009;251:731–42.

    Article  PubMed  Google Scholar 

  39. Patterson DM, Padhani AR, Collins DJ. Technology insight: water diffusion MRI–a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol. 2008;5:220–33.

    Article  PubMed  Google Scholar 

  40. Byun WM, Shin SO, Chang Y, et al. Diffusion-weighted MR imaging of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol. 2002;23:906–12.

    PubMed  Google Scholar 

  41. Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 t. Radiology. 2010;257:135–43.

    Article  PubMed  Google Scholar 

  42. Razek AA, Farouk A, Mousa A, et al. Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr. 2011;35:332–6.

    Article  PubMed  Google Scholar 

  43. Huang CF, Chiou SY, Wu MF, et al. Apparent diffusion coefficients for evaluation of the response of brain tumors treated by gamma knife surgery. J Neurosurg. 2010;113(Suppl):97–104.

    PubMed  Google Scholar 

  44. Roth Y, Tichler T, Kostenich G, et al. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology. 2004;232:685–92.

    Article  PubMed  Google Scholar 

  45. Morgan VA, Riches SF, Thomas K, et al. Diffusion-weighted magnetic resonance imaging for monitoring prostate cancer progression in patients managed by active surveillance. Br J Radiol. 2011;84:31–7.

    Article  PubMed  CAS  Google Scholar 

  46. Peronneau P, Lassau N, Leguerney I, et al. Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization. Ultraschall Med. 2010;31:370–8.

    Article  PubMed  CAS  Google Scholar 

  47. Williams R, Hudson JM, Lloyd BA, et al. Dynamic microbubble contrast-enhanced US to measure tumor response to targeted therapy: a proposed clinical protocol with results from renal cell carcinoma patients receiving antiangiogenic therapy. Radiology. 2011;260:581–90.

    Article  PubMed  Google Scholar 

  48. Lamuraglia M, Escudier B, Chami L, et al. To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced doppler ultrasound. Eur J Cancer. 2006;42:2472–9.

    Article  PubMed  CAS  Google Scholar 

  49. Escudier B, Lassau N, Angevin E, et al. Phase i trial of sorafenib in combination with ifn alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma or malignant melanoma. Clin Cancer Res. 2007;13:1801–9.

    Article  PubMed  CAS  Google Scholar 

  50. Lassau N, Lamuraglia M, Chami L, et al. Gastrointestinal stromal tumors treated with imatinib: monitoring response with contrast-enhanced sonography. AJR Am J Roentgenol. 2006;187:1267–73.

    Article  PubMed  Google Scholar 

  51. Lassau N, Lamuraglia M, Vanel D, et al. Doppler US with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb sarcomas: prospective study of 49 cases. Ann Oncol. 2005;16:1054–60.

    Article  PubMed  CAS  Google Scholar 

  52. Cosgrove D, Lassau N. Imaging of perfusion using ultrasound. Eur J Nucl Med Mol Imaging. 2010;37 Suppl 1:S65–85.

    Article  PubMed  Google Scholar 

  53. Lassau N, Koscielny S, Chami L, et al. Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification–preliminary results. Radiology. 2011;258:291–300.

    Article  PubMed  Google Scholar 

  54. Lassau N, Chami L, Koscielny S, et al.: Quantitative functional imaging by dynamic contrast enhanced ultrasonography (DCE-US) in gist patients treated with masatinib. Invest New Drugs 2010.

  55. •• Lassau N, Koscielny S, Albiges L, et al.: Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography. Clin Cancer Res 2010;16:1216–1225. They evaluated DCE-US in early evaluation of treatment response after sunitinib therapy to metastatic RCC.

  56. Lassau N, Chami L, Chebil M, et al. Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med. 2011;11:18–24.

    PubMed  Google Scholar 

  57. Michels J, Lassau N, Gross-Goupil M, et al. Sunitinib inducing tumor lysis syndrome in a patient treated for renal carcinoma. Invest New Drugs. 2010;28:690–3.

    Article  PubMed  Google Scholar 

  58. Casali PG, Blay JY. Soft tissue sarcomas: Esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21 Suppl 5:v198–203.

    Article  PubMed  Google Scholar 

  59. Piscaglia F, Nolsoe C, Dietrich CF, et al.: The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 2011.

  60. Majhail NS, Urbain JL, Albani JM, et al. F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol. 2003;21:3995–4000.

    Article  PubMed  Google Scholar 

  61. Lyrdal D, Boijsen M, Suurkula M, et al. Evaluation of sorafenib treatment in metastatic renal cell carcinoma with 2-fluoro-2-deoxyglucose positron emission tomography and computed tomography. Nucl Med Commun. 2009;30:519–24.

    Article  PubMed  CAS  Google Scholar 

  62. Minamimoto R, Nakaigawa N, Tateishi U, et al. Evaluation of response to multikinase inhibitor in metastatic renal cell carcinoma by fdg pet/contrast-enhanced CT. Clin Nucl Med. 2010;35:918–23.

    Article  PubMed  Google Scholar 

  63. Revheim ME, Winge-Main AK, Hagen G, et al. Combined positron emission tomography/computed tomography in sunitinib therapy assessment of patients with metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol). 2011;23:339–43.

    Article  CAS  Google Scholar 

  64. Middendorp M, Maute L, Sauter B, et al. Initial experience with 18f-fluoroethylcholine PET/CT in staging and monitoring therapy response of advanced renal cell carcinoma. Ann Nucl Med. 2010;24:441–6.

    Article  PubMed  CAS  Google Scholar 

  65. Hugonnet F, Fournier L, Medioni J, et al. Metastatic renal cell carcinoma: relationship between initial metastasis hypoxia, change after 1 month’s sunitinib, and therapeutic response: An 18f-fluoromisonidazole PET/CT study. J Nucl Med. 2011;52:1048–55.

    Article  PubMed  Google Scholar 

Download references

Disclosures

V. S. Katabathina: none. Dr. Nathalie Lassau has received honoraria from Pfizer, Bracco Imaging, Toshiba, Novartis, and Hoffman-La Roche. Dr. Ivan Pedrosa has received grants from Pfizer, GlaxoSmithKline, and Amgen. C. S. Ng: none; S. R. Prasad: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasa R. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katabathina, V.S., Lassau, N., Pedrosa, I. et al. Evaluation of Treatment Response in Patients with Metastatic Renal Cell Carcinoma: Role of State-of-the-Art Cross-Sectional Imaging. Curr Urol Rep 13, 70–81 (2012). https://doi.org/10.1007/s11934-011-0233-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-011-0233-x

Keywords

Navigation