Skip to main content

Advertisement

Log in

Advanced Renal Mass Imaging: Diffusion and Perfusion MRI

  • New Techniques: Imaging (A Atala, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Computed tomography (CT) is considered the imaging modality of choice in evaluation of renal lesions. The advantages of magnetic resonance imaging (MRI) compared to CT include superior soft tissue contrast, avoidance of ionizing radiation and iodinated contrast media, and the possibility of performing functional and advanced imaging techniques such as diffusion-weighted (DWI) and perfusion–weighted imaging (PWI). Although the traditional role of MRI in the evaluation of renal mass is primarily that of a problem-solving tool, DWI and PWI are expanding the role of MRI in management of renal cell cancers. DWI and PWI have shown considerable promise not only in renal lesion detection and characterization as benign or malignant, but also in assessment of renal cell cancer subtype and nuclear grade. Furthermore, these techniques have the potential to assist with tailoring patient- and disease-specific management by providing surgical planning in patients with localized renal cell cancer and assessing treatment response in patients with advanced renal cell cancer undergoing targeted chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kang SK, Kim D, Chandarana H. Contemporary imaging of the renal mass. Curr Urol Rep. 2011;12(1):11–7.

    Article  PubMed  Google Scholar 

  2. Ho V, Allen S, Hood M, Choyke P. Renal masses: quantitative assessment of enhancement with dynamic MR imaging. Radiology. 2002;224:695–700.

    Article  PubMed  Google Scholar 

  3. Hecht EM, Israel GM, Krinsky GA, et al. Renal masses: quantitative analysis of enhancement with signal intensity measurements versus qualitative analysis of enhancement with image subtraction for diagnosing malignancy at MR imaging. Radiology. 2004;232:373–8.

    Article  PubMed  Google Scholar 

  4. Narumi Y, Miyazaki T, Hatanaka Y, et al. MR imaging evaluation of renal carcinoma. Abdom Imaging. 1997;22:216–25.

    Article  PubMed  CAS  Google Scholar 

  5. Huch Böni RA, Debatin JF, Krestin FP. Contrast-enhanced MR imaging of the kidneys and adrenal glands. Magn Reson Imaging Clin North Am. 1996;4:101–31.

    Google Scholar 

  6. Kallman DA, King BF, Hattery RR, et al. Renal vein and inferior vena cava tumor thrombus in renal cell carcinoma: CT, US, MRI and venacavography. J Computer Assist Tomogr. 1992;16(2):240–7.

    Article  CAS  Google Scholar 

  7. Choyke PL, Walther MM, Wagner JR, et al. Renal cancer: preoperative evaluation with dual phase three-dimensional MR angiography. Radiology. 1997;205(3):767–71.

    PubMed  CAS  Google Scholar 

  8. Kutikov A, Uzzo RG. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J Urol. 2009;182(3):844–53.

    Article  PubMed  Google Scholar 

  9. Hayn MH, Schwaab T, Underwood W, Kim HL. RENAL nephrometry score predicts surgical outcomes of laparoscopic partial nephrectomy. BJU Int. 2011;108(6):876–81.

    PubMed  Google Scholar 

  10. Kutikov A, Smaldone MC, Egleston BL, et al. Anatomic features of enhancing renal masses predict malignant and high-grade pathology: a preoperative nomogram using the RENAL nephrometry score. Eur Urol. 2011;60:241–8.

    Article  PubMed  Google Scholar 

  11. Chandarana H, Taouli B. Diffusion and perfusion imaging of the liver. Eur J Radiol. 2010

  12. Thoeny HC, De Keyzer F. Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology. 2011;259(1):25–38.

    Article  PubMed  Google Scholar 

  13. Taouli B, Koh DM. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47–66.

    Article  PubMed  Google Scholar 

  14. Kim S, Naik M, Sigmund E, Taouli B. Diffusion-weighted MR imaging of the kidneys and the urinary tract. Magn Reson Imaging Clin N Am. 2008;16(4):585–96.

    Article  PubMed  Google Scholar 

  15. Squillaci E, Manenti G, Di Stefano F, et al. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res. 2004;23:39–45.

    PubMed  CAS  Google Scholar 

  16. Cova M, Squillaci E, Stacul F, et al. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol. 2004;77:851–7.

    Article  PubMed  CAS  Google Scholar 

  17. •• Taouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:398–407. According to this article, DWI can be used to characterize renal lesions; ADC values are significantly lower in renal malignancies than in benign lesions.

    Article  PubMed  Google Scholar 

  18. Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res. 2004;24(6):4175–9.

    PubMed  Google Scholar 

  19. Zhang J, Tehrani YM, Wang L, et al. Renal masses: characterization with diffusion-weighted MR imaging–a preliminary experience. Radiology. 2008;247:458–64.

    Article  PubMed  Google Scholar 

  20. • Kim S, Jain M, Harris AB, et al. T1 hyperintense renal lesions: characterization with diffusion-weighted MR imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:796–807. DWI is helpful in differentiating benign from malignant T1 hyperintense lesions.

    Article  PubMed  Google Scholar 

  21. Sandrasegaran K, Sundaram CP, Ramaswamy R, et al. Usefulness of diffusion-weighted imaging in the evaluation of renal masses. Am J Roent. 2010;194:438–45.

    Article  Google Scholar 

  22. •• Wang H, Cheng L, Zhang X, et al. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135–43. The authors state that DWI is helpful in differentiating papillary and clear-cell subtype of RCC with high accuracy.

    Article  PubMed  Google Scholar 

  23. • Rosenkrantz AB, Niver BE, Fitzgerald EF, et al. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. Am J Roent. 2010;195:344–51. According to the authors, high nuclear grade clear cell RCCs have lower ADC compared to clear cell RCC of low grade.

    Article  Google Scholar 

  24. Choi H. Response evaluation of gastrointestinal stromal tumors. Oncologist. 2008;13 Suppl 2:4–7.

    Article  PubMed  Google Scholar 

  25. Smith AD, Shah SN, Rini BI, Lieber ML, Remer EM. Morphology, Attenuation, Size, and Structure (MASS) criteria: assessing response and predicting clinical outcome in metastatic renal cell carcinoma on antiangiogenic targeted therapy. AJR Am J Roentgenol. 2010;194(6):1470–8.

    Article  PubMed  Google Scholar 

  26. Padhani AR, Koh DM. Diffusion MR imaging for monitoring of treatment response. MRI Clin N Am. 2011;19:181–209.

    Google Scholar 

  27. Kamel IR, Reyes DK, Liapi E, Bluemke DA, Geschwind JF. Functional MR imaging assessment of tumor response after 90Y microsphere treatment in patients with unresectable hepatocellular carcinoma. J Vasc Interv Radiol. 2007;18:49–56.

    Article  PubMed  Google Scholar 

  28. Leary A, Pickering LM, Larkin JMG, et al. Quantitative diffusion-weighted (DW) MR imaging of microcapillary perfusion and tissue diffusivity as biomarkers of response of renal cell carcinoma (RCC) to treatment with sunitinib. Presented at the 2011 American Society of Clinical Oncology Annual Meeting. Chicago, Il. J Clin Oncol 2011; 29: supplement abstract TPS154.

  29. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol. 2011;196(6):1351–61.

    Article  PubMed  Google Scholar 

  30. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol. 2011;46(5):285–91.

    PubMed  Google Scholar 

  31. Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    PubMed  Google Scholar 

  32. Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401–7.

    PubMed  Google Scholar 

  33. Hagiwara M, Rusinek H, Lee VS, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging–initial experience. Radiology. 2008;246:926–34.

    Article  PubMed  Google Scholar 

  34. Bokacheva L, Rusinek H, Zhang JL, Lee VS. Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2008;16(4):597–611.

    Article  PubMed  Google Scholar 

  35. Sourbron SP, Buckley DL. On the scope and interpretation of the Tofts models for DCE-MRI. Magn Reson Med. 2011;66(3):735–45.

    Article  PubMed  Google Scholar 

  36. • Sun MR, Ngo L, Genega EM, Atkins MB, et al. Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes—correlation with pathologic findings. Radiology. 2009;250:793–802. This article shows that different enhancement patterns on two–time point dynamic contrast-enhanced MRI allow for differentiation between clear cell, papillary, and chromophobe RCCs.

    Article  PubMed  Google Scholar 

  37. Scialpi M, Di Maggio A, Midiri M, Loperfido A, Angelelli G, Rotondo A. Small renal masses: assessment of lesion characterization and vascularity on dynamic contrast-enhanced MR imaging with fat suppression. AJR Am J Roentgenol. 2000;175(3):751–7.

    PubMed  CAS  Google Scholar 

  38. • Notohamiprodjo M, Sourbron S, Staehler M, et al. Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging. 2010;31(2):490–501. The authors show that perfusion-weighted MRI can provide information regarding tumor blood flow and permeability.

    Article  PubMed  Google Scholar 

  39. Hillman GG, Singh-Gupta V, Al-Bashir AK, et al. Dynamic contrast-enhanced magnetic resonance imaging of sunitinib-induced vascular changes to schedule chemotherapy in renal cell carcinoma xenograft tumors. Transl Oncol. 2010;3(5):293–306.

    PubMed  Google Scholar 

  40. Galbraith SM, Maxwell RJ, Lodge MA, et al. Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol. 2003;21:2831–42.

    Article  PubMed  CAS  Google Scholar 

  41. • Flaherty KT, Rosen MA, Heitjan DF, et al. Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther. 2008;7(4):496–501. In this article, the authors state that perfusion-weighted MRI not only can detect changes in tumor vascularity in response to antiangiogenic drugs, but also may be able to identify patients who are most likely to respond.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

A. G. Gilet: none; S. K. Kang: none; D. Kim: none. Dr. Hersh Chandarana has received research support from Siemens Health Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hersh Chandarana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilet, A.G., Kang, S.K., Kim, D. et al. Advanced Renal Mass Imaging: Diffusion and Perfusion MRI. Curr Urol Rep 13, 93–98 (2012). https://doi.org/10.1007/s11934-011-0227-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-011-0227-8

Keywords

Navigation