Skip to main content

Advertisement

Log in

Cell type-specific analyses for identifying prostate cancer biomarkers

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Cancers of the prostate contribute substantial morbidity and mortality to the male population. The correlation of prostate cancer incidence with aging suggests that the disease burden associated with prostate carcinoma will increase dramatically over the next several decades. Despite the large number of fatalities directly linked to prostate cancer, most men harboring the disease will die of other causes. This fact poses substantial dilemmas for screening programs designed to diagnose cancers at an early stage, as the optimal approach also would provide guidance as to which cancers could or should be observed, versus those malignancies that require curative therapy, and whether localized treatments are sufficient or if additional systemic interventions are indicated. To address these issues, substantial resources have been focused on the identification of biomarkers capable of specifically and sensitively diagnosing prostate cancers and providing prognostic information. However, the discovery and use of biomarkers must contend with the complexity and heterogeneity of body fluids and tissues. This review describes approaches that use cell type-specific analysis methods to identify cancer-associated features with the potential of distinguishing individuals with cancer of the prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sakr WA, Grignon DJ, Crissman JD, et al.: High-grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20–69: an autopsy study of 249 cases. In Vivo 1994, 8:439–443.

    PubMed  CAS  Google Scholar 

  2. Jemal A, Murray T, Ward E, et al.: Cancer statistics, 2005. CA Cancer J Clin 2005, 55:10–30.

    Article  PubMed  Google Scholar 

  3. Bill-Axelson A, Holmberg L, Ruutu M, et al.: Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 2005, 352:1977–1984.

    Article  PubMed  CAS  Google Scholar 

  4. Punglia RS, D’Amico AV, Catalona WJ, et al.: Effect of verification bias on screening for prostate cancer by measurement of prostate-specific antigen. N Engl J Med 2003, 349:335–342.

    Article  PubMed  Google Scholar 

  5. Gleason DF: Histologic grading of prostate cancer: a perspective. Hum Pathol 1992, 23:273–279.

    Article  PubMed  CAS  Google Scholar 

  6. Kattan MW, Eastham JA, Stapleton AM, et al.: A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998, 90:766–771.

    Article  PubMed  CAS  Google Scholar 

  7. Rogers CG, Yan G, Zha S, et al.: Prostate cancer detection on urinalysis for alpha methylacyl coenzyme a racemase protein. J Urol 2004, 172:1501–1503.

    Article  PubMed  CAS  Google Scholar 

  8. Prakash K, Pirozzi G, Elashoff M, et al.: Symptomatic and asymptomatic benign prostatic hyperplasia: molecular differentiation by using microarrays. Proc Natl Acad Sci U S A 2002, 99:7598–7603.

    Article  PubMed  CAS  Google Scholar 

  9. Dhanasekaran SM, Barrette TR, Ghosh D, et al.: Delineation of prognostic biomarkers in prostate cancer. Nature 2001, 412:822–826.

    Article  PubMed  CAS  Google Scholar 

  10. Luo J, Duggan DJ, Chen Y, et al.: Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 2001, 61:4683–4688.

    PubMed  CAS  Google Scholar 

  11. Singh D, Febbo PG, Ross K, et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1:203–209.

    Article  PubMed  CAS  Google Scholar 

  12. Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33:49–54.

    Article  PubMed  CAS  Google Scholar 

  13. Rubin MA, Zhou M, Dhanasekaran SM, et al.: Alpha-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 2002, 287:1662–1670.

    Article  PubMed  CAS  Google Scholar 

  14. Magee JA, Araki T, Patil S, et al.: Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res 2001, 61:5692–5696.

    PubMed  CAS  Google Scholar 

  15. Mor O, Nativ O, Stein A, et al.: Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene 2003, 22:7702–7710.

    Article  PubMed  CAS  Google Scholar 

  16. Saban MR, Nguyen NB, Hammond TG, Saban R: Gene expression profiling of mouse bladder inflammatory responses to LPS, substance P, and antigen-stimulation. Am J Pathol 2002, 160:2095–2110.

    PubMed  CAS  Google Scholar 

  17. Zhao H, Patra A, Yeh CC, et al.: Effects of aging on growth factors gene and protein expression in the dorsal and ventral lobes of rat prostate. Biochem Biophys Res Commun 2002, 292:482–491.

    Article  PubMed  CAS  Google Scholar 

  18. McNeal JE: Anatomy of the prostate and morphogenesis of BPH. Prog Clin Biol Res 1984, 145:27–53.

    PubMed  CAS  Google Scholar 

  19. Bonkhoff H, Remberger K: Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 1996, 28:98–106.

    Article  Google Scholar 

  20. McNeal JE, Alroy J, Leav I, et al.: Immunohistochemical evidence for impaired cell differentiation in the premalignant phase of prostate carcinoma. Am J Clin Pathol 1988, 90:23–32.

    PubMed  CAS  Google Scholar 

  21. De Marzo AM, Marchi VL, Epstein JI, Nelson WG: Proliferative inf lammator y atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 1999, 155:1985–1992.

    PubMed  Google Scholar 

  22. Liu AY, True LD, LaTray L, et al.: Analysis and sorting of prostate cancer cell types by flow cytometry. Prostate 1999, 40:192–199.

    Article  PubMed  Google Scholar 

  23. Liu AY, Nelson PS, van den Engh G, Hood L: Human prostate epithelial cell-type cDNA libraries and prostate expression patterns. Prostate 2002, 50:92–103.

    Article  PubMed  CAS  Google Scholar 

  24. Ross DT, Scherf U, Eisen MB, et al.: Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 2000, 24:227–235.

    Article  PubMed  CAS  Google Scholar 

  25. Bono H, Yagi K, Kasukawa T, et al.: Systematic expression profiling of the mouse transcriptome using RIKEN cDNA microarrays. Genome Res 2003, 13:1318–1323.

    Article  PubMed  CAS  Google Scholar 

  26. Dong SM, Traverso G, Johnson C, et al.: Detecting colorectal cancer in stool with the use of multiple genetic targets. J Natl Cancer Inst 2001, 93:858–865.

    Article  PubMed  CAS  Google Scholar 

  27. Jennings CD, Foon KA: Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy [In Process Citation]. Blood 1997, 90:2863–2892.

    PubMed  CAS  Google Scholar 

  28. Mefford H, van den Engh G, Friedman C, Trask BJ: Analysis of the variation in chromosome size among diverse human populations by bivariate flow karyotyping. Hum Genet 1997, 100:138–144.

    Article  PubMed  CAS  Google Scholar 

  29. Chong SS, Almqvist E, Telenius H, et al.: Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum Mol Genet 1997, 6:301–309.

    Article  PubMed  CAS  Google Scholar 

  30. Liu AY, True LD: Characterization of prostate cell types by CD cell surface molecules. Am J Pathol 2002, 160:37–43.

    PubMed  CAS  Google Scholar 

  31. Liu AY, Roudier MP, True LD: Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile. Am J Pathol 2004, 165:1543–1556. This study used extensive CD immunophenotyping to demarcate different cell types within the human prostate gland and demonstrated substantial heterogeneity.

    PubMed  Google Scholar 

  32. Terpe HJ, Stark H, Prehm P, Gunthert U: CD44 variant isoforms are preferentially expressed in basal epithelial of non-malignant human fetal and adult tissues. Histochemistry 1994, 101:79–89.

    Article  PubMed  CAS  Google Scholar 

  33. Wahab ZA, Wright GL Jr: Monoclonal antibody (anti-Leu 7) directed against natural killer cells reacts with normal, benign, and malignant prostate tissues. Int J Cancer 1985, 36:677–683.

    Article  PubMed  CAS  Google Scholar 

  34. Liu AY, True LD, LaTray L, et al.: Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci U S A 1997, 94:10705–10710.

    Article  PubMed  CAS  Google Scholar 

  35. Hudson DL, O’Hare M, Watt FM, Masters JR: Proliferative heterogeneity in the human prostate: evidence for epithelial stem cells. Lab Invest 2000, 80:1243–1250.

    Article  PubMed  CAS  Google Scholar 

  36. Reiter RE, Gu Z, Watabe T, et al.: Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A 1998, 95:1735–1740.

    Article  PubMed  CAS  Google Scholar 

  37. Patrawala L, Calhoun T, Schneider-Broussard R, et al.: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Res 2005, 65:6207–6219.

    Article  PubMed  CAS  Google Scholar 

  38. Xin L, Lawson DA, Witte ON: The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A 2005, 102:6942–6947.

    Article  PubMed  CAS  Google Scholar 

  39. Allinen M, Beroukhim R, Cai L, et al.: Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004, 6:17–32. This study used MACS to isolate different cellular populations from normal and neoplastic human breast tissues and subsequently generated gene expression fingerprints from the distinct cell types.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang RR, Man YG, Vang R, et al.: A subset of morphologically distinct mammary myoepithelial cells lacks corresponding immunophenotypic markers. Breast Cancer Res 2003, 5:R151-R156.

    Article  PubMed  CAS  Google Scholar 

  41. Ellis WJ, Pfitzenmaier J, Colli J, et al.: Detection and isolation of prostate cancer cells from peripheral blood and bone marrow. Urology 2003, 61:277–281. This study used MACS to isolate prostate epithelial cells from the peripheral circulation and the bone marrow of patients with prostate cancer showing that a substantial number of early-stage patients harbor disseminated cells.

    Article  PubMed  Google Scholar 

  42. Ulmer A, Schmidt-Kittler O, Fischer J, et al.: Immunomagnetic enrichment, genomic characterization, and prognostic impact of circulating melanoma cells. Clin Cancer Res 2004, 10:531–537.

    Article  PubMed  CAS  Google Scholar 

  43. Moreno JG, Miller MC, Gross S, et al.: Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology 2005, 65:713–718.

    Article  PubMed  Google Scholar 

  44. Emmert-Buck MR, Bonner RF, Smith PD, et al.: Laser capture microdissection. Science 1996, 274:998–1001.

    Article  Google Scholar 

  45. Luo L, Salunga RC, Guo H, et al.: Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 1999, 5:117–122.

    Article  PubMed  CAS  Google Scholar 

  46. Van Gelder RN, von Zastrow ME, Yool A, et al.: Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 1990, 87:1663–1667.

    Article  PubMed  Google Scholar 

  47. Moore S, Knudsen B, True LD, et al.: Loss of stearoyl-CoA desaturase expression is a frequent event in prostate carcinoma. Int J Cancer 2005, 114:563–571.

    Article  PubMed  CAS  Google Scholar 

  48. Ashida S, Nakagawa H, Katagiri T, et al.: Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide geneexpression profiles of prostate cancers and PINs. Cancer Res 2004, 64:5963–5972.

    Article  PubMed  CAS  Google Scholar 

  49. Lieberfarb ME, Lin M, Lechpammer M, et al.: Genomewide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res 2003, 63:4781–4785.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Nelson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, P.S., Montgomery, B. Cell type-specific analyses for identifying prostate cancer biomarkers. Curr Urol Rep 7, 57–63 (2006). https://doi.org/10.1007/s11934-006-0039-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-006-0039-4

Keywords

Navigation