Skip to main content

Advertisement

Log in

Targeting osseous metastases: rationale and development of radioimmunotherapy for prostate cancer

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

For patients with metastatic prostate cancer, bone is the primary site of tumor localization and the major cause of disease-related morbidity and mortality. Hormonal therapy and chemotherapy alone cannot eradicate disease harbored in bone. The delivery of radiotherapy to the reservoir of disease is an approach previously only achievable using bone-seeking radiopharmaceuticals. Now, however, with the identification of tumor-specific targets, antibodies are being used to deliver radiotherapy to these sites. In this article, we review the rationale behind this approach, the targets being explored, the radiation sources available, and the antibodies currently under clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Savarese DM, Halabi S, Hars V, et al.: Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780. J Clin Oncol 2001, 19:2509–2516.

    PubMed  CAS  Google Scholar 

  2. Petrylak DP, Macarthur RB, O’Connor J, et al.: Phase I trial of docetaxel with estramustine in androgen-independent prostate cancer. J Clin Oncol 1999, 17:958–967.

    PubMed  CAS  Google Scholar 

  3. Kelly WK, Curley T, Slovin S, et al.: Paclitaxel, estramustine phosphate, and carboplatin in patients with advanced prostate cancer. J Clin Oncol 2001, 19:44–53.

    PubMed  CAS  Google Scholar 

  4. Guise TA, Mundy GR: Cancer and bone. Endocr Rev 1998, 19:18–54.

    Article  PubMed  CAS  Google Scholar 

  5. Scher HI, Chung LWK: Bone metastases: biology and therapy. Semin Oncol 1994, 21:630–656.

    PubMed  CAS  Google Scholar 

  6. Porter AT, McEwan AJB, Powe JE, et al.: Results of a randomized phase III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys 1993, 25:805–813.

    PubMed  CAS  Google Scholar 

  7. Robinson RG, Preston DF, Schiefelbein M, Baxter KG: Strontium 89 therapy for the palliation of pain due to osseous metastases. JAMA 1995, 274:420–424.

    Article  PubMed  CAS  Google Scholar 

  8. Lewington VJ, McEwan AJ, Ackery DM, et al.: A prospective, randomised double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer 1991, 27:954–958.

    Article  PubMed  CAS  Google Scholar 

  9. Collins C, Eary JF, Donaldson G, et al.: Samarium-153-EDTMP in bone metastases of hormone refractory prostate carcinoma: a phase I/II trial. J Nucl Med 1993, 34:1839–1844.

    PubMed  CAS  Google Scholar 

  10. Serafini AN, Houston SJ, Resche I, et al.: Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol 1998, 16:1574–1581.

    PubMed  CAS  Google Scholar 

  11. van Rensburg AJ, Alberts AS, Louw WK: Quantifying the radiation dosage to individual skeletal lesions treated with samarium-153-EDTMP. J Nucl Med 1998, 39:2110–2115.

    PubMed  Google Scholar 

  12. Turner SL, Gruenewald S, Spry N, Gebski V: Less pain does equal better quality of life following strontium-89 therapy for metastatic prostate cancer. Br J Cancer 2001, 84:297–302.

    Article  PubMed  CAS  Google Scholar 

  13. Fossa SD, Paus E, Lochoff M, et al.: 89Strontium in bone metastases from hormone resistant prostate cancer: palliation effect and biochemical changes. Br J Cancer 1992, 66:177–180.

    PubMed  CAS  Google Scholar 

  14. Bolger JJ, Dearnaley DP, Kirk D, et al.: Strontium-89 (Metastron) versus external beam radiotherapy in patients with painful bone metastases secondary to prostatic cancer: preliminary report of a multicenter trial. Semin Oncol 1993, 20:32–33.

    PubMed  CAS  Google Scholar 

  15. Tu SM, Millikan RE, Mengistu B, et al.: Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 2001, 357:326–327. This randomized phase II trial suggested that bone-directed radiation therapy might confer a survival benefit when combined with chemotherapy. A phase III trial testing this strategy is underway.

    Article  Google Scholar 

  16. Taplin ME, Bubley GJ, Shuster TD, et al.: Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 1995, 332:1393–1398.

    Article  PubMed  CAS  Google Scholar 

  17. Koivisto P, Visakorpi T, Kallioniemi OP: Androgen receptor gene amplification: a novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scand J Clin Lab Invest 1996, 226:57–63.

    Article  CAS  Google Scholar 

  18. Osman I, Scher HI, Drobnjak M, et al.: HER-2/neu (p185neu) protein expression in the natural and treated history of prostate cancer. Clin Cancer Res 2001, 7:2643–2647.

    PubMed  CAS  Google Scholar 

  19. McDonnell TJ, Troncoso P, Brisbay SM, et al.: Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 1992, 52:6940–6944.

    PubMed  CAS  Google Scholar 

  20. Ow KT, Mameghan D, Lochhead A, et al.: The prognostic significance of tumor-associated markers p53, HER-2/neu, c-myc, v-Hras, PCNA and EGFr in local and distant recurrence in localized human prostatic adenocarcinoma. Urol Oncol 1995, 144:152.

    Google Scholar 

  21. Scher HI, Heller G: Clinical states in prostate cancer: towards a dynamic model of disease progression. Urology 2000, 55:323–327.

    Article  PubMed  CAS  Google Scholar 

  22. Morris MJ, Reuter VE, Kelly WK, et al.: HER-2 profiling and targeting in prostate carcinoma. Cancer 2002, 94:980–986.

    Article  PubMed  CAS  Google Scholar 

  23. Reiter RE, Gu Z, Watabe T, et al.: Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc Natl Acad Sci U S A 1998, 95:1735–1740.

    Article  PubMed  CAS  Google Scholar 

  24. Gu Z, Thomas G, Yamashiro J, et al.: Prostate stem cell antigen (PSCA) expression increases with high Gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 2000, 19:1288–1296.

    Article  PubMed  CAS  Google Scholar 

  25. Israeli RS, Powell CT, Fair WR, Heston WD: Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res 1993, 53:227–230.

    PubMed  CAS  Google Scholar 

  26. Wright J, WL, Haley C, Beckett ML, Schellhammer PF: Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues. Urol Oncol 1995, 1:18–28.

    Google Scholar 

  27. Wright GL Jr, Grob BM, Haley C, et al.: Upregulation of prostate-specific membrane antigen after androgendeprivation therapy. Urology 1996, 48:326–334.

    Article  PubMed  Google Scholar 

  28. Smith-Jones PM, Vallabahajosula S, Goldsmith SJ, et al.: In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res 2000, 60:5237–5243. This comparison of multiple antibodies targeting PSMA illustrates how the properties of the antibody—from binding site, to affinity, to the rate of internalization—can be used to select the one most appropriate for radioimmunotherapy.

    PubMed  CAS  Google Scholar 

  29. Chang SS, Reuter VE, Heston WD, et al.: Five different antiprostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999, 59:3192–3198.

    PubMed  CAS  Google Scholar 

  30. Thor A, Ohuchi N, Szpak CA, et al.: The distribution of onocfetal antigen TAG-72 defined by monoclonal antibody B73.2. Cancer Res 1986, 46:3118–3124.

    PubMed  CAS  Google Scholar 

  31. Gallinger S, Reilly RM, Kirsh JG, et al.: Comparative dual label study of first and second generation antitumor-associated glycoprotein-72 monoclonal antibodies in colorectal cancer patients. Cancer Res 1993, 53:271–278.

    PubMed  CAS  Google Scholar 

  32. Myers RB, Meredith RF, Schlom J, et al.: Tumor associated glycoprotein-72 is highly expressed in prostatic adenocarcinomas. J Urol 1994, 152:243–246.

    PubMed  CAS  Google Scholar 

  33. Brenner PC, Rettig WJ, Sanz-Moncasi MP, et al.: TAG-72 expression in primary, metastatic and hormonally treated prostate cancer as defined by monoclonal antibody CC49. J Urol 1995, 153:1575–1579.

    Article  PubMed  CAS  Google Scholar 

  34. Babaian RJ, Murray JL, Lamki LM, et al.: Radioimmunological imaging of metastatic prostatic cancer with 111indium-labeled monoclonal antibody PAY 276. J Urol 1987, 137:439–443.

    PubMed  CAS  Google Scholar 

  35. Halpern SE, Haindl W, Beauregard J, et al.: Scintigraphy with In-111-labeled monoclonal antitumor antibodies: kinetics, biodistribution, and tumor detection. Radiology 1988, 168:529–536.

    PubMed  CAS  Google Scholar 

  36. Colcher D, Minelli MF, Roselli M, et al.: Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies. Cancer Res 1988, 48:4597–4603.

    PubMed  CAS  Google Scholar 

  37. Divgi CR, Scott AM, Dantis L, et al.: Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma. J Nucl Med 1995, 36:586–592.

    PubMed  CAS  Google Scholar 

  38. Meredith RF, Bueschen AJ, Khazaeli MB, et al.: Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49. J Nucl Med 1994, 35:1017–1022.

    PubMed  CAS  Google Scholar 

  39. Slovin SF, Scher HI, Divgi CR, et al.: Interferon-gamma and monoclonal antibody 131I-labeled CC49: outcomes in patients with androgen-independent prostate cancer. Clin Cancer Res 1998, 4:643–651. This study illustrates the concept of target modulation as a means of maximizing the effects of RIT.

    PubMed  CAS  Google Scholar 

  40. Deb N, Goris M, Trisler K, et al.: Treatment of hormonerefractory prostate cancer with 90Y-CYT-356 monoclonal antibody. Clin Cancer Res 1996, 2:1289–1297.

    PubMed  CAS  Google Scholar 

  41. Liu H, Moy P, Kim S, et al.: Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 1997, 57:3629–3634.

    PubMed  CAS  Google Scholar 

  42. Smith-Jones PM, Vallabhajosula S, Navarro V, et al.: Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med 2003, 44:610–617.

    PubMed  CAS  Google Scholar 

  43. Morris MJ, Pandit-Taskar N, Divgi C, et al.: Pilot trial of anti-PSMA antibody J591 for prostate cancer [abstract]. Proc ASCO 2003, 22:407.

    Google Scholar 

  44. Milowsky MI, Joyce M, Berger F, et al.: Phase I trial results of yttrium-90 (90Y)-labeled anti-prostate specific membrane antigen (PSMA) monoclonal antibody (mAb) J591 in the treatment of patients with advanced prostate cancer [abstract]. Proc ASCO 2003, 22:394.

    Google Scholar 

  45. Bander NH, Trabulsi EJ, Kostakoglu L, et al.: Targeting metastatic prostate cancer with radiolabeled monoclonal antibody J591 to the extracellular domain of prostate specific membrane antigen. J Urol 2003, 170:1717–1721. This paper presented the initial targeting data regarding J591, an antibody targeting the external domain of PSMA that can be repetitively dosed.

    Article  PubMed  CAS  Google Scholar 

  46. Bander NH, Nanus DM, Milowsky MI, et al.: Phase I radioimmunotherapy (RIT) trial of humanized monoclonal (mAb) antibody J591 to the extracellular domain of prostate specific membrane antigen (PSMAext) radiolabeled with 177leutetium (177Lu) in advanced prostate cancer (Pca) [abstract]. Proc ASCO 2003, 22:401.

    Google Scholar 

  47. Bander NH, Nanus DM, Milowsky MI, et al.: Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Semin Oncol 2003, 30:667–676.

    Article  PubMed  CAS  Google Scholar 

  48. McDevitt MR, Barendswaard E, Ma D, et al.: An alpha-particle emitting antibody ([213Bi]J591) for radioimmunotherapy of prostate cancer. Cancer Res 2000, 60:6095–6100.

    PubMed  CAS  Google Scholar 

  49. Ross S, Spencer SD, Holcomb I, et al.: Prostate stem cell antigen as therapy target: tissue expression and in vivo efficacy of an immunoconjugate. Cancer Res 2002, 62:2546–2553.

    PubMed  CAS  Google Scholar 

  50. Rydh A, Riklund Ahlstrom K, Widmark A, et al.: Radioimmunoscintigraphy with a novel monoclonal antiprostate antibody (E4): an experimental study in nude mice. Cancer 1997, 80:2398–2403.

    Article  PubMed  CAS  Google Scholar 

  51. O’Donnell RT, DeNardo SJ, Yuan A, et al.: Radioimmunotherapy with (111)In/(90)Y-2IT-BAD-m170 for metastatic prostate cancer. Clin Cancer Res 2001, 7:1561–1568.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M.J., Pandit-Taskar, N., Divgi, C. et al. Targeting osseous metastases: rationale and development of radioimmunotherapy for prostate cancer. Curr Urol Rep 6, 163–170 (2005). https://doi.org/10.1007/s11934-005-0003-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-005-0003-8

Keywords

Navigation