Skip to main content

Advertisement

Log in

Antisense oligonucleotide therapy for urologic tumors

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Modulation of gene expression using antisense oligonucleotides has advanced from the laboratory to the clinic. Numerous companies can, at least partially, attribute their success to the development of antisense techniques, and one antisense drug is currently on the market. Antisense compounds have been used in clinical trials that included patients with urologic tumors, mostly directed at proliferation- or apoptosis-related targets. Furthermore, therapeutic inhibition of many new identified genes is being investigated in preclinical tests. This review provides a contemporary overview of current preclinical and clinical antisense oligonucleotide concepts for the treatment of urologic tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Zamecnik PC, Stephenson ML: Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 1978, 75:280–284.

    Article  PubMed  CAS  Google Scholar 

  2. Marwick C: First “antisense” drug will treat CMV retinitis. JAMA 1998, 280:871.

    Article  PubMed  CAS  Google Scholar 

  3. Neckers LM: Cellular internalization of oligodeoxynucleotides. In Antisense Research and Applications. Edited by Crooke ST, Lebleu B. Los Angeles: CRC Press; 1993: 451–460.

    Google Scholar 

  4. Schlingensiepen R, Brysch W, Schlingensiepen KH, eds: Antisense: From Technology to Therapy. Lab Manual and Textbook, vol 6. Williston, VT: Blackwell Science; 1996.

    Google Scholar 

  5. Levin AA: A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta 1999, 1489:69–84.

    PubMed  CAS  Google Scholar 

  6. Crooke RM, Graham MJ, Cooke ME, Crooke ST: In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J Pharmacol Exp Ther 1995, 275:462–473.

    PubMed  CAS  Google Scholar 

  7. Agrawal S, Temsamani J, Tang JY: Pharmacokinetics, biodistribution and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A 1991, 88:7595–7599.

    Article  PubMed  CAS  Google Scholar 

  8. Jaaskelainen I, Monkkonen J, Urtti A: Oligonucleotide-cationic liposome interactions. A physicochemical study. Biochim Biophys Acta 1994, 9:115–123.

    Google Scholar 

  9. Bennett CF, Chiang MY, Chan H, et al.: Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol Pharmacol 1992, 41:1023–1033.

    PubMed  CAS  Google Scholar 

  10. Kitajima I, Shinohara T, Bilakovics J, et al.: Ablation of transplanted HTLV-I tax-transformed tumors in mice by antisense inhibition of NF-kappa B [letter]. Science 1993, 259:1523.

    Article  PubMed  CAS  Google Scholar 

  11. Crooke ST: Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1999, 1489:31–44.

    PubMed  CAS  Google Scholar 

  12. Baker BF, Miraglia L, Hagedorn CH: Modulation of eucaryotic initiation factor-4E binding to 5’-capped oligoribonucleotides by modified anti-sense oligonucleotides. J Biol Chem 1992, 267:11495–11499.

    PubMed  CAS  Google Scholar 

  13. Sierakowska H, Sambade MJ, Agrawal S, Kole R: Repair of thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Acad Sci U S A 1996, 93:12840–12844.

    Article  PubMed  CAS  Google Scholar 

  14. Patzel V, Steidl U, Kronenwett R, et al.: A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res 1999, 27:4328–4334. The authors describe a new, promising, computer-predicted experimental approach to identify highly effective AS-ON sequences. The selected antisense compounds showed strongly improved antisense effectivity compared with empirically selected ONs.

    Article  PubMed  CAS  Google Scholar 

  15. Jain RK: Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst 1989, 81:570–576.

    Article  PubMed  CAS  Google Scholar 

  16. Plenat FN, Klein-Monhoven BM, Vignaud JM, Duprez A:Cell and tissue distribution of synthetic oligonucleotides in healthy and tumor-bearing mice. Am J Pathol 1995, 147:124–135.

    PubMed  CAS  Google Scholar 

  17. Nishida E, Gotho Y: The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sciences 1993, 4:128–131.

    Article  Google Scholar 

  18. Daum G, Eisenmann-Tappe I, Fries HW, et al.: The ins and outs of RAF kinases. Trends Biochem Sci 1994, 7:474–480.

    Article  Google Scholar 

  19. Cho-Chung YS: Antisense oligonucleotide inhibition of serine/threonine kinases: an innovative approach to cancer treatment. Pharmacol Ther 1999, 82:437–449. An excellent review of different approaches to serine/threonine kinase inhibition with AS-ONs.

    Article  PubMed  CAS  Google Scholar 

  20. Bos JL: ras Oncogenes in human cancer: a review. Cancer Res 1989, 49:4682–1699.

    PubMed  CAS  Google Scholar 

  21. Adjei AA: Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 2001, 93:1062–1074.

    Article  PubMed  CAS  Google Scholar 

  22. Brown D, Yu ZP, Miller P, et al.: Modulation of ras expression by antisense, nonionic deoxyoligonucleotide analogs. Oncogene Res 1989, 4:243–252.

    PubMed  CAS  Google Scholar 

  23. Saison-Behmoaras T, Tocque B, Rey I, et al.: Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation. EMBO J 1991, 10:1111–1118.

    PubMed  CAS  Google Scholar 

  24. Gray GD, Hernandez OM, Hebel D, et al.: Antisense DNA inhibition of tumor growth induced by c-Ha-ras oncogene in nude mice. Cancer Res 1993, 53:577–580.

    PubMed  CAS  Google Scholar 

  25. Gordon MS, Sandler AB, Holmlund JT, et al.: A phase I trial of ISIS 2503, an antisense inhibitor of H-ras, administered by a 24-hour weekly infusion to patients with advanced cancer [abstract]. Proc Am Soc Clin Oncol 1999, 18:157a.

    Google Scholar 

  26. Dorr A, Bruce J, Monia B, et al.: Phase I and pharmacokinetic trial of ISIS 2503, a 20-mer antisense oligonucleotide against H-ras, by 14-day continuous infusion in patients with advanced cancer [abstract]. Proc Am Soc Clin Oncol 1999, 18: 157a.

    Google Scholar 

  27. Marais R, Light Y, Paterson HF, et al.: Differential regulation of Raf-1, A-Raf and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997, 272:4378–4383.

    Article  PubMed  CAS  Google Scholar 

  28. Wang HG, Rapp UR, Reed JC: Bcl-2 targets the protein kinase RAF-1 to mitochondria. Cell 1996, 87:629–638.

    Article  PubMed  CAS  Google Scholar 

  29. Shimizu K, Nakatsu Y, Sekiguchi M, et al.: Molecular cloning of an activated human oncogene, homologous to v-raf, from primary stomach cancer. Proc Nat Acad Sci U S A 1985, 82:5641–5645.

    Article  CAS  Google Scholar 

  30. Fukui M, Yamamoto T, Kawai S, et al.: Detection of a raf-related and two other transforming DNA sequences in human tumors maintained in nude mice. Proc Natl Acad Sci U S A 1985, 82:5954–5958.

    Article  PubMed  CAS  Google Scholar 

  31. Monia BP, Johnston JF, Geiger T, et al.: Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996, 2:668–675.

    Article  PubMed  CAS  Google Scholar 

  32. Monia BP: Anti-tumor activity of C-raf antisense-correction. Nat Med 1999, 5:127.

    Article  PubMed  CAS  Google Scholar 

  33. Lau QC, Brusselbach S, Muller R: Abrogation of c-Raf expression induces apoptosis in tumor cells. Oncogene 1998, 16:1899–1902.

    Article  PubMed  CAS  Google Scholar 

  34. Geiger T, Muller M, Monia BP, Fabbro D: Antitumor activity of a C-raf antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted subcutaneously into nude mice. Clin Cancer Res 1997, 3:1179–1185.

    PubMed  CAS  Google Scholar 

  35. Stevenson JP, Yao KS, Gallagher M, et al.: Phase I clinical/ pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J Clin Oncol 1999, 17:2227–2236.

    PubMed  CAS  Google Scholar 

  36. Cunningham CC, Holmlund JT, Schiller JH, et al.: A phase I trial of c-Raf kinase antisense oligonucleotide ISIS 5132 administered as a continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2000, 6:1626–1631.

    PubMed  CAS  Google Scholar 

  37. Rudin CM, Holmlund J, Fleming GF, et al.: Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin Cancer Res 2001, 7:1214–1220.

    PubMed  CAS  Google Scholar 

  38. Grandori C, Cowley SM, James LP, Eisenman RN: The Myc/ Max/Mad network and the transcriptional control of cell behaviour. Annu Rev Cell Dev Biol 2000, 16:653–699.

    Article  PubMed  CAS  Google Scholar 

  39. DePinho RA, Schreiber-Agus N, Alt FW: myc family oncogenes in the development of normal and neoplastic cells. Adv Cancer Res 1991, 57:1–46.

    Article  PubMed  CAS  Google Scholar 

  40. Nesbit CE, Tersak JM, Prochownik EV: MYC oncogenes and human neoplastic disease. Oncogene 1999, 18:3004–3016.

    Article  PubMed  CAS  Google Scholar 

  41. Balaji KC, Koul H, Mitra S, et al.: Antiproliferative effects of c-myc antisense oligonucleotide in prostate cancer cells: a novel therapy in prostate cancer. Urology 1997, 50:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  42. Mizutani Y, Bonavida B, Fukumoto M, Yoshida O: Enhanced susceptibility of c-myc antisense oligonucleotide-treated human renal cell carcinoma cells to lysis by peripheral blood lymphocytes. J Immunother Emphasis Tumor Immunol 1995, 17:78–87.

    PubMed  CAS  Google Scholar 

  43. Langzam L, Koren R, Gal R, et al.: Patterns of protein kinase C isoenzyme expression in transitional cell carcinoma of bladder. Relation to degree of malignancy. Am J Clin Pathol 2001, 116:377–385.

    Article  PubMed  CAS  Google Scholar 

  44. Yuspa SH: The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis: thirty-third GHA Clowes Memorial Award Lecture. Cancer Res 1994, 54:1178–1189.

    PubMed  CAS  Google Scholar 

  45. Dean N, McKay R, Miraglia L, et al.: Inhibition of growth of human tumor cell lines in nude mice by an antisense oligonucleotide inhibitor of protein kinase C-α expression. Cancer Res 1996, 56:3499–3507.

    PubMed  CAS  Google Scholar 

  46. Yuen AR, Halsey J, Fisher GA, et al.: Phase I study of an antisense oligonucleotide to protein kinase C-α (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 1999, 5:3357–3363.

    PubMed  CAS  Google Scholar 

  47. Mani S, Rudin CM, Kunkel K, et al.: Phase I clinical and pharmacokinetic study of protein kinase C-α antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin Cancer Res 2002, 8:1042–1048.

    PubMed  CAS  Google Scholar 

  48. Villalona-Carlero MA, Figueroa J, Nadella P, et al.: Phase I and pharmacokinetic (PK) study of the protein kinase C α (PKC-a inhibitor ISIS-3521 in combination with cisplatin and gemcitabine in patients with solid malignancies. Paper presented at the 2001 AACR-NCI-EORTC International Conference. Miami, FL. October 29–November 2, 2001.

  49. Yuen A, Halsey J, Fisher G, et al.: Phase II trial of ISIS 3521, an antisense inhibitor of PKC-a with carboplatin and paclitaxel in non-small cell lung cancer: update survival and time to progression data. Paper presented at the 2001 AACRNCI-EORTC International Conference. Miami, FL. October 29–November 2, 2001.

  50. Gordge PC, Hulme MJ, Clegg RA, Miller WR: Elevation of protein kinase A and protein kinase C activities in malignant as compared with normal human breast tissue. Eur J Cancer 1996, 32A:2120–2126.

    Article  PubMed  CAS  Google Scholar 

  51. Cho-Chung YS: Role of cyclic AMP receptor proteins in growth, differentiation, and suppression of malignancy: new approaches to therapy. Cancer Res 1990, 50:7093–7100.

    PubMed  CAS  Google Scholar 

  52. Wang H, Cai Q, Zeng X, et al.: Antitumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to the RIα subunit of protein kinase A after oral administration. Proc Nat Acad Sci U S A 1999, 96:13989–13994. Innovative experiments showing synergistic effects of AS-ONs against PKA and cisplatin. The uptake of labeled ONs by tumor tissue after oral administration indicated oral availability of these mixed-backbone compounds. Target protein downregulation correlated with tumor growth inhibition in vivo.

    Article  CAS  Google Scholar 

  53. Chen HX, Marshall JL, Ness E, et al.: A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors. Clin Cancer Res 2000, 6:1259–1266.

    PubMed  CAS  Google Scholar 

  54. Ciardiello F, Caputo R, Bianco R, et al.: Cooperative inhibition of renal cancer growth by anti-epidermal growth factor receptor antibody and protein kinase A antisense oligonucleotide. J Natl Cancer Inst 1998, 90:1087–1094.

    Article  PubMed  CAS  Google Scholar 

  55. Tortora G, Caputo R, Damiano V, et al.: Oral administration of a novel taxane, an antisense oligonucleotide targeting protein kinase A, and the epidermal growth factor receptor inhibitor Iressa causes cooperative antitumor and antiangiogenic activity. Clin Cancer Res 2001, 7:4156–4163.

    PubMed  CAS  Google Scholar 

  56. Chao DT, Korsmeyer SJ: BCL-2 family: regulators of cell death. Annu Rev Immunol 1998, 16:395–419.

    Article  PubMed  CAS  Google Scholar 

  57. Green DR, Reed JC: Mitochondria and apoptosis. Science 1998, 281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  58. Gautschi O, Tschopp S, Olie RA, et al.: Activity of a novel bcl-2/ bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 2001, 93:463–471. Immunoblotting of tumor lysates showed reduction of target proteins, especially bcl-2 after antisense treatment of established tumor xenografts in mice, which correlated with tumor growth inhibition.

    Article  PubMed  CAS  Google Scholar 

  59. Miyake H, Tolcher A, Gleave ME: Antisense Bcl-2 oligodeoxynucleotides inhibit progression to androgen-independence after castration in the Shionogi tumor model. Cancer Res 1999, 59:4030–4034. The authors nicely demonstrate target mRNA downregulation in vivo that is accompanied by significant inhibition of tumor growth.

    PubMed  CAS  Google Scholar 

  60. Miyake H, Tolcher A, Gleave ME: Chemosensitization and delayed androgen-independent recurrence of prostate cancer with the use of antisense Bcl-2 oligodeoxynucleotides. J Natl Cancer Inst 2000, 92:34–41.

    Article  Google Scholar 

  61. Tolcher AW, Roth S, Wynne H, et al.: G3139 (Genasense) enhances docetaxel antitumor activity and leads to long-term survivors in the androgen-independent prostate cancer xenograph (PC3) model. Paper presented at the 2001 AACRNCI-EORTC International Conference. Miami, FL. October 29–November 2, 2001.

  62. Tolcher AW: Preliminary phase I results of G3139 (bcl-2 antisense oligonucleotide) therapy in combination with docetaxel in hormone-refractory prostate cancer. Semin Oncol 2001, 28(4 Suppl 15):67–70.

    Article  PubMed  CAS  Google Scholar 

  63. Duggan BJ, Maxwell P, Kelly JD, et al.: The effect of antisense Bcl-2 oligonucleotides on Bcl-2 protein expression and apoptosis in human bladder transitional carcinoma. J Urol 2001, 166:1098–1105.

    Article  PubMed  CAS  Google Scholar 

  64. Lebedeva I, Raffo A, Rando R, et al.: Chemosensitization of bladder carcinoma cells by bcl-xL antisense oligonucleotides. J Urol 2001, 166:461–469.

    Article  PubMed  CAS  Google Scholar 

  65. Uchida T, Gao JP, Wang C, et al.: Antitumor effect of bcl-2 antisense phosphorothioate oligodeoxynucleotides on human renal-cells in vitro and in mice. Mol Urol 2001, 5:71–78.

    Article  PubMed  CAS  Google Scholar 

  66. Morris MJ, Tong WP, Cordon-Cardo C, et al.: Phase I trial of BCL-2 antisense oligonucleotide (G3139) administered by continuous intravenous infusion in patients with advanced cancer. Clin Cancer Res 2002, 8:679–683.

    PubMed  CAS  Google Scholar 

  67. Jansen B, Wacheck V, Heere-Ress E, et al.: A phase I-II study with dacarbazine and bcl-2 antisense oligonucleotide G3139 (GENTA) as a chemosensitizer in patients with advanced malignant melanoma. Proc Am Soc Clin Oncol 1999, 18:531a.

    Google Scholar 

  68. Chi KN, Gleave ME, Klasa R, et al.: A phase I dose-finding study of combined treatment with an antisense Bcl-2 oligonucleotide (Genasense) and mitoxantrone in patients with metastatic hormone-refractory prostate cancer. Clin Cancer Res 2001, 7:3920–3927.

    PubMed  CAS  Google Scholar 

  69. Marcucci G, Byrd JC, Cataland SR, et al.: Significant disease response to Genasense (Genta Inc) (GS), a bcl-2 antisense, in combination with chemotherapy in refractory (REF) or relapsed (REL) acute leukemia (AL). Paper presented at the 2001 AACR-NCI-EORTC International Conference. Miami, FL. October 29–November 2, 2001.

  70. Duggan B, Tschopp S, Zangemeister-Wittke U, et al.: BCL-2 and BCL-XL antisense as a gene therapy strategy in bladder cancer. Eur Urol 2001, 39(S5):172.

    Google Scholar 

  71. Wojtowicz-Praga S: Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J Immunother 1997, 20:165–177.

    Article  PubMed  CAS  Google Scholar 

  72. Inge TH, Hoover SK, Susskind BM, et al.: Inhibition of tumorspecific cytotoxic T-lymphocyte responses by transforming growth factor b1. Cancer Res 1992, 52:1386–1392.

    PubMed  CAS  Google Scholar 

  73. Torre-Amione G, Beauchamp RD, Koeppen H, et al.: A highly immunogenic tumor transfected with murine transforming growth factor type b1 cDNA escapes immune surveillance. Proc Natl Acad Sci U S A 1990, 87:1486–1490.

    Article  PubMed  CAS  Google Scholar 

  74. Tzai TS, Lin CI, Shiau AL, Wu CL: Antisense oligonucleotide specific for transforming growth factor-β 1 inhibit both in vitro and in vivo growth of MBT-2 murine bladder cancer. Anticancer Res 1998, 18:1585–1590.

    PubMed  CAS  Google Scholar 

  75. Kausch I, Lingnau A, Deinert I, et al.: Antisense therapy against the Ki-67 mRNA: a new antitumoral approach. Eur Urol 2001, 39:172.

    Article  Google Scholar 

  76. Achenbach TV, Muller R, Slater EP: Synergistic antitumor effect of chemotherapy and antisense-mediated ablation of the cell cycle inhibitor p27KIP-1. Clin Cancer Res 2000, 6:3006–3014.

    PubMed  CAS  Google Scholar 

  77. Wang H, Nan L, Shi Z, et al.: Modulation of gene expression and inhibition of tumor growth by antisense anti-MDM2 oligonucleotides in prostate cancer. Paper presented at the 2001 AACR-NCI-EORTC International Conference. Miami, FL. October 29–November 2, 2001.

  78. Kiyama S, Zellweger T, Miyake H, Gleave M: Antisense insulinlike growth factor binding protein-2 oligonucleotides induce apoptosis and delay progression to androgen-independence after castration in human prostate cancer tumor models. Eur Urol 2001, 39:94.

    Google Scholar 

  79. Eder IE, Culig Z, Ramoner R, et al.: Inhibition of LNCaP prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther 2000, 7:997–1007.

    Article  PubMed  CAS  Google Scholar 

  80. Eder IE, Hoffmann J, Rogatsch H, et al.: Inhibition of LNCaP prostate tumor growth in vivo by an antisense oligonucleotide directed against the human androgen receptor. Cancer Gene Ther 2002, 9:117–125.

    Article  PubMed  CAS  Google Scholar 

  81. Gnarra JR, Dressler GR: Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides. Canc Res 1995, 55:4092–4098.

    CAS  Google Scholar 

  82. Zellweger T, Miyake H, July LV, et al.: Chemosensitization of human renal cell cancer using antisense oligonucleotides targeting the antiapoptotic gene clustering. Neoplasia 2001, 3:360–367.

    Article  PubMed  CAS  Google Scholar 

  83. Shi W, Siemann DW: Inhibition of renal cell carcinoma angiogenesis and growth by antisense oligonucleotides targeting vascular endothelial growth factor. Br J Cancer 2002, 87:119–126.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausch, I., Böhle, A. Antisense oligonucleotide therapy for urologic tumors. Curr Urol Rep 4, 60–69 (2003). https://doi.org/10.1007/s11934-003-0059-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-003-0059-2

Keywords

Navigation