Skip to main content
Log in

Molecular mechanisms of renal development

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The biology of renal development has become increasingly complex because technical advances in genetics and cell biology have been used to study this aspect of embryogenesis. The molecular biology and genetics of renal development may seem inconsequential and frustrating to the practicing clinician, but insight into fundamental mechanisms of renal development are necessary to understand clinical breakthroughs that will occur in the future. As a basis for appreciating these concepts, specific paradigms of renal development are illustrated and the investigative strategies used to develop them are summarized in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Glassberg, KI: Normal and abnormal development of the kidney: a clinician’s interpretation of current knowledge. J Urol 2002, 167:2339–2351.

    Article  PubMed  CAS  Google Scholar 

  2. Horster MF, Braun GS, Huber SM: Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 1999, 79:1157–1191. This article presents an in-depth and comprehensive review of renal development.

    PubMed  CAS  Google Scholar 

  3. Perantoni AO, Dove LF, Karavanova I: Basic fibroblast growth factor can mediate the early inductive events in renal development. Proc Natl Acad Sci U S A 1995, 92:4696–4700.

    Article  PubMed  CAS  Google Scholar 

  4. Liu ZZ, Kumar A, Ota K, et al.: Developmental regulation and the role of insulin and insulin receptor in metanephrogenesis. Proc Natl Acad Sci U S A 1997, 94:6758–6763.

    Article  PubMed  CAS  Google Scholar 

  5. Schuchardt A, D’agati V, Pachnis V, Constantini F: Renal agenesis and hypodysplasia in ret-k mutant mice result from defects in ureteric bud development. Development 1996, 122:1919–1929.

    PubMed  CAS  Google Scholar 

  6. Lin LF, Doherty DH, Lile LD, et al.: GDNF: a glial cell linederived neurotrophic factor for midbrain dopaminergic neurons. Science 1993, 260:1130–1132.

    Article  PubMed  CAS  Google Scholar 

  7. Kotzbauer PT, Lampe PA, Heukeroth RO, et al.: Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature 1996, 384:467–470.

    Article  PubMed  CAS  Google Scholar 

  8. Milbrant J, de Sauvage FJ, Fahrner TJ, et al.: Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 1998, 20:245–253.

    Article  Google Scholar 

  9. Sanicola M, Hession C, Worley D, et al.: Glial cell line-derived neurotrophic factor-dependent RET activation can be mediated by two different cell-surface accessory proteins. Proc Natl Acad Sci U S A 1997, 94:6238–6243.

    Article  PubMed  CAS  Google Scholar 

  10. Jing S, Yu Y, Fang M, et al.: GFRalpha-2 and GFRalpha-3 are two new receptors for ligands of the GDNF family. J Biol Chem 1997, 272: 33111–33117.

    Article  PubMed  CAS  Google Scholar 

  11. Vega QC, Worby CA, Lechner MS, et al.: Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci U S A 1996, 93:10657–10661.

    Article  PubMed  CAS  Google Scholar 

  12. Hubbard SR, Mohammadi M, Schlessinger J: Autoregulatory mechanism in protein-tyrosine kinases. J Biol Chem 1998, 273:11987–11990.

    Article  PubMed  CAS  Google Scholar 

  13. Tsui-Pierchala BA, Ahrens RC, Crowder RJ, et al.: The long and short isoforms of Ret function as independent signaling complexes. J Biol Chem 2002, 277:34618–34625.

    Article  PubMed  CAS  Google Scholar 

  14. Mrowka C, Schedl A: Wilms’ tumor suppressor gene WT1: from structure to renal pathophysiologic features. J Am Soc Nephrol 2000, 11: S106-S115.

    PubMed  CAS  Google Scholar 

  15. Varanasi R, Bardeesy N, Ghahremani M, et al.: Fine structure analysis of the WT1 gene in sporadic Wilms tumors. Proc Natl Acad Sci U S A 1994, 91:3554–3558.

    Article  PubMed  CAS  Google Scholar 

  16. Schumacher V, Schneider S, Figge A, et al.: Correlation of germline mutations and two-hit inactivation of the WT1 gene with Wilms’ tumors of stromal-predominant histology. Proc Natl Acad Sci U S A 1997, 94:3972–3977.

    Article  PubMed  CAS  Google Scholar 

  17. Patek CE, Little MH, Fleming S, et al.: A zinc finger truncation of murine WT1 results in the characteristic urogenital abnormalities of Denys-Drash syndrome. Proc Natl Acad Sci U S A 1999, 96:2931–2936.

    Article  PubMed  CAS  Google Scholar 

  18. Call KM, Glaser T, Ito C, et al.: Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990, 60:509–520.

    Article  PubMed  CAS  Google Scholar 

  19. Haber DA, Sohn RL, Buckler AJ, et al.: Alternative splicing and genomic structure of the Wilms’ tumor gene WT1. Proc Natl Acad Sci U S A 1991, 88:9618–9622.

    Article  PubMed  CAS  Google Scholar 

  20. Englert C, Vidal M, Maheswaran S, et al.: Truncated mutants alter the subnuclear localization of the wild-type protein. Proc Natl Acad Sci U S A 1995, 92:11960–11964.

    Article  PubMed  CAS  Google Scholar 

  21. English MA, Licht JD: Tumor-associated WT1 missense mutants indicate that transcriptional activation by WT1 is critical for growth control. J Biol Chem 1999, 19:13258–13263.

    Article  Google Scholar 

  22. Stuart RO, Bush KT, Nigam SK: Changes in global gene expression patterns during development and maturation of the rat kidney. Proc Natl Acad Sci U S A 2001, 98:5649–5654.

    Article  PubMed  CAS  Google Scholar 

  23. Jones KL, Fletcher J, eds: Smith’s Recognizable Patterns of Human Malformation. Philadelphia: WB Saunders; 1997.

    Google Scholar 

  24. Sparagana SP, Roach SE: Tuberous sclerosis complex. Curr Opin Neurol 2000, 13:115–119.

    Article  PubMed  CAS  Google Scholar 

  25. Van Slegtenhorst M, de Hoogt R, Hermans C, et al.: Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997, 277:805–808.

    Article  PubMed  Google Scholar 

  26. The European Chromosome 16 Tuberous Sclerosis Consortium: Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993, 75:1305–1315.

    Google Scholar 

  27. Carsillo T, Astrinidis A, Henski EP: Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 2000, 97:6085–6090.

    Article  PubMed  CAS  Google Scholar 

  28. Kobayashi T, Minowa O, Sugitani Y, et al.: A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A 2001, 98:8762–8767.

    Article  PubMed  CAS  Google Scholar 

  29. Rennebeck G, Kleymenova EV, Anderson R, et al.: Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci U S A 1998, 95:15629–15634.

    Article  PubMed  CAS  Google Scholar 

  30. Johnson M, Kerfoot C, Bushnell T, et al.: Hamartin and tuberin expression in human tissues. Mod Pathol 2001, 14:202–210.

    Article  PubMed  CAS  Google Scholar 

  31. Nellist M, van Slegtenhorst MA, Goebloed M, et al.: Characterization of the cytosolic tuberin-hamartin complex. J Biol Chem 1999, 274:35647–35652. This article demonstrates biochemical evidence for interaction between the gene products of TSC1 and TSC2.

    Article  PubMed  CAS  Google Scholar 

  32. Nellist M, Verhaaf B, Goedbloed MA, et al.: TSC2 missense mutations inhibit tuberin phosphorylation and prevent formation of the tuberin-hamartin complex. Hum Mol Genet 2001, 10:2889–2898.

    Article  PubMed  CAS  Google Scholar 

  33. Latif F, Tory K, Gnarra J, et al.: Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993, 260:1317–1320.

    Article  PubMed  CAS  Google Scholar 

  34. Linehan WM, Zbar B, Klausner RD: Renal carcinoma. In The Genetic Basis of Human Cancer, edn 2. Edited by Vogelstein B, Kinzler K. New York: McGraw-Hill; 2002:449–474.

    Google Scholar 

  35. Gnarra JR, Tory K, Weng Y, et al.: Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994, 7:85–90.

    Article  PubMed  CAS  Google Scholar 

  36. Gnarra, JR, Ward JM, Porter FB, et al.: Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci U S A 1997, 94:9102–9107.

    Article  PubMed  CAS  Google Scholar 

  37. Kamura T, Koepp DM, Conrad MN, et al.: Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999, 284:657–661. This paper reports the discovery of an additional component in the ubiquitin ligase complex involving VHL, and summarizes a similar mechanism found in other species.

    Article  PubMed  CAS  Google Scholar 

  38. Maxwell PH, Wiesener MS, Chang GW, et al.: The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399:271–275. This article demonstrates additional downstream events that are affected by VHL mutations.

    Article  PubMed  CAS  Google Scholar 

  39. Glassberg KI: Renal dysgenesis and cystic disease of the kidney. In Campbell’s Urology, edn 8. Edited by Kavoussi L, Walsh PC. Philadelphia: WB Saunders; 2002: 1925–1994.

    Google Scholar 

  40. Gabow PA: Autosomal dominant polycystic kidney disease. N Engl J Med 1993, 329:332–342.

    Article  PubMed  CAS  Google Scholar 

  41. Harris PC: Molecular basis of polycystic kidney disease: PKD1, PKD2, and PKHD1. Curr Opin Nephrol Hypertens 2002, 11:309–314.

    Article  PubMed  Google Scholar 

  42. Lu W, Peissel B, Babakhanlou H, et al.: Perinatal lethality with kidney and pancreas defects in mice with a targeted PKD1 mutation. Nat Genet 1997, 17:179–181.

    Article  PubMed  CAS  Google Scholar 

  43. Wu G, D’Agati V, Cai Y, et al.: Somatic inactivation of PKD2 results in polycystic kidney disease. Cell 1998, 93:177–188.

    Article  PubMed  CAS  Google Scholar 

  44. Ong ACM, Ward CJ, Butler RJ, et al.: Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 1999, 154:1721–1729.

    PubMed  CAS  Google Scholar 

  45. Ward CJ, Turley H, Ong ACM, et al.: Polycystin, the polycystic kidney disease 1 protein, is expressed by epithelial cells in fetal, adult, and polycystic kidney. Proc Natl Acad Sci U S A 1996, 93:1524–1528.

    Article  PubMed  CAS  Google Scholar 

  46. Kim E, Arnould T, Sellin LK, et al.: The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem 1999, 274:4947–4953.

    Article  PubMed  CAS  Google Scholar 

  47. Bhunia AK, Piontek K, Boletta A, et al.: PKD1 induces p21 and regulation of the cell cycle via direct activation of the JAKSTAT signaling pathway in a process requiring PKD2. Cell 2002, 109:157–168.

    Article  PubMed  CAS  Google Scholar 

  48. Cai Y, Maeda Y, Cedzich A, et al.: Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem 1999, 274:28557–28565.

    Article  PubMed  CAS  Google Scholar 

  49. Gonzalez-Perret S, Kim K, Ibarra C, et al.: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A 2001, 98:1182–1187.

    Article  Google Scholar 

  50. Gallagher AR, Cedzich A, Gretz N, et al.: The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A 2000, 97:4017–4022.

    Article  PubMed  CAS  Google Scholar 

  51. Newby LJ, Street AJ, Zhao Y, et al.: Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 2002, 277:20763–20773. This paper presents biochemical evidence for the interaction between polycystin-1 and polycystin-2.

    Article  PubMed  CAS  Google Scholar 

  52. Tsiokas L, Kim E, Arnould T, et al.: Homo and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A 1997, 94:6965–6970.

    Article  PubMed  CAS  Google Scholar 

  53. Onuchic LF, Furu L, Nagasawa Y, et al.: PKHD1, the polycystic kidney and hepatic disease 1 gene, encodes a novel large protein containing multiple immunoglobulin-like plexin-transcription-factor domains and parallel beta-helix 1 repeats. Am J Hum Genet 2002, 70:1305–1317.

    Article  PubMed  CAS  Google Scholar 

  54. Ward CJ, Hogan MC, Rossetti S, et al.: The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet 2002, 30:259–269.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, C.M., Glassberg, K.I. Molecular mechanisms of renal development. Curr Urol Rep 4, 164–170 (2003). https://doi.org/10.1007/s11934-003-0045-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-003-0045-8

Keywords

Navigation