Skip to main content
Log in

Molecular mechanisms and pharmacokinetics of phosphodiesterase-5 antagonists

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The prominence of phosphodiesterase-5 (PDE-5) inhibitors in the treatment of male erectile dysfunction and other diseases related to vascular dysfunction mandates a comprehensive understanding of the properties and effects of these compounds. Three potent and selective PDE-5 inhibitors (sildenafil, tadalafil, and vardenafil) have been approved for clinical use. The clinical efficacy and safety profiles of these medications are related to their molecular mode of action, the selectivity for PDE-5, and the pharmacokinetic properties (absorption, bioavailability, time to onset of action, distribution, metabolism, and elimination). These PDE-5 inhibitors share some common properties with regard to mechanisms of action and selectivities for PDE-5. They also have distinctive characteristics that may impact their clinical use. This article focuses on the basic biochemistry of cyclic guanosine monophosphate signaling and the pharmacokinetic parameters that describe characteristics of drug action of these PDE-5 inhibitors in facilitating smooth muscle relaxation, leading to improved penile erectile response or causing side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Robison GA, Butcher RW, Sutherland EW: Cyclic AMP. New York: Academic Press; 1971.

    Google Scholar 

  2. Burns F, Zhao AZ, Beavo JA: Cyclic nucleotide phosphodiesterases: gene complexity, regulation by phosphorylation, and physiologic implications. Adv Pharmacol Academic Press 1996, 36:29–48.

    CAS  Google Scholar 

  3. Corbin JD, Francis SH: Cyclic GMP phosphodiesterase-5: target for sildenafil. J Biol Chem 1999, 274:13729–13732. Presents the basic biochemistry and physiology of PDE-5 and PDE-5 inhibitors.

    Article  PubMed  CAS  Google Scholar 

  4. Francis SH, Turko IV, Corbin JD: Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res Mol Biol 2001, 65:1–52.

    Article  PubMed  CAS  Google Scholar 

  5. Soderling SH, Beavo JA: Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 2000, 12:174–179.

    Article  PubMed  CAS  Google Scholar 

  6. Jeremy JY, Ballard SA, Naylor AM, et al.: Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro. Br J Urol 1997, 79:958–963.

    PubMed  CAS  Google Scholar 

  7. Ballard SA, Gingell CJ, Tang K, et al.: Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 1998, 159:2164–2171.

    Article  PubMed  CAS  Google Scholar 

  8. Corbin JD, Francis SH: Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract 2002, 56:453–459.

    PubMed  CAS  Google Scholar 

  9. Rotella DP: Phosphodiesterase 5 inhibitors: current status and potential applications. Nat Rev Drug Discov 2002, 1:674–682. Reviews preclinical and clinical aspects of sildenafil, tadalafil, and vardenafil.

    Article  PubMed  CAS  Google Scholar 

  10. Hellstrom WJ, Gittelman M, Karlin G, et al.: Vardenafil for treatment of men with erectile dysfunction: efficacy and safety in a randomized, double-blind, placebo-controlled trial. J Androl 2002, 23:763–771.

    PubMed  CAS  Google Scholar 

  11. Klotz T, Sachse R, Heidrich A, et al.: Vardenafil increases penile rigidity and tumescence in erectile dysfunction patients: a RigiScan and pharmacokinetic study. World J Urol 2001, 19:32–39.

    Article  PubMed  CAS  Google Scholar 

  12. Lue TF: Erectile dysfunction. N Engl J Med 2000, 324:1801–1813.

    Google Scholar 

  13. Montorsi F, Salonia A, Deho F, et al.: Pharmacological management of erectile dysfunction. BJU Int 2003, 91:446–454.

    Article  PubMed  CAS  Google Scholar 

  14. Padma-Nathan H, Rosen RC, Shobsigh R, et al.: Cialis (IC351) provides prompt response and extended responsiveness for the treatment of erectile dysfunction. J Urol 2001, 164(suppl):224.

    Google Scholar 

  15. Padma-Nathan H, Porst H, Eardley I, Thibonnier M: Efficacy and safety of tadalafil in men with erectile dysfunction with and without hypertension. Am J Hypertens 2002, 15:143A.

    Article  Google Scholar 

  16. Hellstrom WJ, Gittelman M, Karlin G, et al.: Sustained efficacy and tolerability of vardenafil, a highly potent selective phosphodiesterase type 5 inhibitor, in men with erectile dysfunction: results of a randomized, double-blind, 26-week placebo-controlled pivotal trial. Urology 2003, 61:8–14.

    Article  PubMed  Google Scholar 

  17. Atz AM, Lefler AK, Fairbrother DL, et al.: Sildenafil augments the effects of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 2002, 124:628–629.

    Article  PubMed  Google Scholar 

  18. Bortolotti M, Mari C, Lopilato C, et al.: Effects of sildenafil on esophageal motility of patients with idiopathic achalasia. Gastroenterology 2000, 118:253–257.

    Article  PubMed  CAS  Google Scholar 

  19. Ghofrani HA, Wiedemann R, Rose F, et al.: Sildenafil for treatment of lung fibrosis and pulmonary hypertension: a randomized controlled trial. Lancet 2002, 360:895–900.

    Article  PubMed  CAS  Google Scholar 

  20. Jackson G, Chambers J: Sildenafil for primary pulmonary hypertension: short- and long-term symptomatic benefit. Int J Clin Pract 2002, 56:397–398.

    PubMed  CAS  Google Scholar 

  21. Lichenstein JR: Use of sildenafil citrate in Raynaud’s phenomenon: comment on the article by Thompson et al. Arthritis Rheum (letter) 2003, 48:282–283.

    Article  Google Scholar 

  22. Nakamizo T, Kawamata J, Yoshida K, et al.: Phosphodiesterase inhibitors are neuroprotective to cultured spinal motor neurons. J Neurosci Res 2003, 71:485–495.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang R, Wang Y, Zhang L, et al.: Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 2002, 33:2675–2680.

    Article  PubMed  CAS  Google Scholar 

  24. Vardi Y, Klein L, Nassar S, et al.: Effects of sildenafil citrate (Viagra) on blood pressure in normotensive and hypertensive men. Urology 2002, 59:747–752.

    Article  PubMed  Google Scholar 

  25. Sadovsky R, Miller T, Moskowitz M, Hackett G: Three-year update of sildenafil citrate (Viagra) efficacy and safety. Int J Clin Pract 2001, 55:115–128.

    PubMed  CAS  Google Scholar 

  26. Kloner RA, Brown M, Prisant LM, Collins M: Effect of sildenafil in patients with erectile dysfunction taking antihypertensive therapy. Sildenafil Study Group. Am J Hypertens 2001, 14:70–73.

    Article  PubMed  CAS  Google Scholar 

  27. Herrmann HC, Chang G, Klugherz BD, Mahoney PD: Hemodynamic effects of sildenafil in men with severe coronary artery disease. N Engl J Med 2000, 342:1622–2626.

    Article  PubMed  CAS  Google Scholar 

  28. Padma-Nathan H, Eardley I, Kloner RA, et al.: A 4-year update on the safety of sildenafil citrate (Viagra). Urology 2003, 60:67–90.

    Article  Google Scholar 

  29. Wallis RM, Corbin JD, Francis SH, Ellis P: Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of traveculae carneae and aortic rings in vitro. Am J Cardiol 1999, 83:3C-12C.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson G, Benjamin N, Jackson N, Allen MJ: Effects of sildenafil citrate on human hemodynamics. Am J Cardiol 1999, 83:13C-20C.

    Article  PubMed  CAS  Google Scholar 

  31. Gopal VG, Francis SH, Corbin JD: Allosteric sites of phosphodiesterase-5 (PDE-5): a potential role in negative feedback regulation of cGMP signaling in corpus cavernosum. Eur J Biochem 2001, 268:3304–3312.

    Article  PubMed  CAS  Google Scholar 

  32. Francis SH, Corbin JD: Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 1999, 36:275–328.

    Article  PubMed  CAS  Google Scholar 

  33. Lincoln TM, Dey N, Sellak H: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 2001, 91:1421–1430.

    PubMed  CAS  Google Scholar 

  34. Schlossmann J, Feil R, Hofmann F: Signaling through NO and cGMP-dependent protein kinases. Ann Med 2003, 35:21–27.

    Article  PubMed  CAS  Google Scholar 

  35. Ignarro LJ, Degnan JN, Baricos WH, et al.: Activation of purified guanylate cyclase by nitric oxide requires heme: comparison of heme-deficient, heme-reconstituted, and hemecontaining forms of soluble enzyme from bovine lung. Biochim Biophys Acta 1982, 718:49–59.

    PubMed  CAS  Google Scholar 

  36. Ignarro LJ, Bush PA, Buga GM, et al.: Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem Biophys Res Commun 1990, 170:843–850.

    Article  PubMed  CAS  Google Scholar 

  37. Rajfer J, Aronson WJ, Bush PA, et al.: Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N Engl J Med 1992, 326:90–94.

    Article  PubMed  CAS  Google Scholar 

  38. McAllister-Lucas LM, Sonnenburg WK, Kadlecek A, et al.: The structure of a bovine lung cGMP-binding cGMP-specific phosphodiesterase deduced from a cDNA clone. J Biol Chem 1993, 268:22863–22873.

    PubMed  CAS  Google Scholar 

  39. Turko IV, Ballard SA, Francis SH, Corbin JD: Inhibition of cyclic GMP binding, cyclic GMP specific phosphodiesterase 5 by sildenafil, and related compounds. Mol Pharmacol 1999, 56:124–130.

    PubMed  CAS  Google Scholar 

  40. Francis SH, Thomas MK, Corbin JD: Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action. Edited by Beavo J, Houslay M. New York: John Wiley & Sons; 1990:117–140.

    Google Scholar 

  41. Corbin JD, Turko IV, Beasley A, Francis SH: Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem 2000, 267:2760–2767. Covers physiologic regulation of PDE-5 by phosphorylation.

    Article  PubMed  CAS  Google Scholar 

  42. Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, et al.: PDE-5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 2003, 22:469–478.

    Article  PubMed  CAS  Google Scholar 

  43. Mullershausen F, Friebe A, Feil R, et al.: Direct activation of PDE-5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol 2003, 160:719–727.

    Article  PubMed  CAS  Google Scholar 

  44. Corbin JD, Blount MA, Weeks JL 2nd, et al.: [3H]Sildenafil binding to phosphodiesterase-5 is specific, kinetically heterogeneous, and stimulated by cGMP. Mol Pharmacol 2003, 63:1364–1372. Demonstration of a new measurement of PDE-5 inhibitor potency using direct binding of radio-labeled inhibitor. Proof that PDE-5 inhibitors potentiate their own effects on penile erection.

    Article  PubMed  CAS  Google Scholar 

  45. Loughney K, Hill TR, Florio VA, et al.: Isolation and characterization of cDNAs encoding PDE-5A, a human cGMP binding, cGMP specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene 1998, 216:139–147.

    Article  PubMed  CAS  Google Scholar 

  46. Lin CS, Lau A, Tu R, Lue TF: Expression of three isoforms of cGMP-binding, cGMP-specific phosphodiesterase (PDE-5) in human penile tissue. Biochem Biophys Res Commun 2000, 268:628–635.

    Article  PubMed  CAS  Google Scholar 

  47. Hutter AM, Kloner RA, Watkins V, et al.: Blood pressure and cardiovascular effects of tadalafil, a new PDE-5 inhibitor. Am J Hypertens 2002, 15:140A.

    Article  Google Scholar 

  48. Porst H, Rosen R, Padma-Nathan H, et al.: The efficacy and tolerability of vardenafil, a new oral selective phosphodiesterase type 5 inhibitor in patients with erectile dysfunction: the first at-home clinical trial. Int J Impotence Res 2001, 13:192–199.

    Article  CAS  Google Scholar 

  49. Berkels R, Klotz T, Sticht G, et al.: Modulation of human platelet aggregation by the phosphodiesterase type 5 inhibitor sildenafil. J Cardiovasc Pharmacol 2001, 37:413–421.

    Article  PubMed  CAS  Google Scholar 

  50. Corbin J, Rannels S, Neal D, et al.: Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin 2003, 19:747–752.

    Article  PubMed  CAS  Google Scholar 

  51. Porst H, Rosen RC, Padma-Nathan H, et al.: Tadalafil allows men with erectile dysfunction to have successful intercourse up to 36 hours postdose. J Urol, 2002 167(suppl):177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, S.H., Corbin, J.D. Molecular mechanisms and pharmacokinetics of phosphodiesterase-5 antagonists. Curr Urol Rep 4, 457–465 (2003). https://doi.org/10.1007/s11934-003-0027-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-003-0027-x

Keywords

Navigation