Skip to main content

Advertisement

Log in

Gene therapy for urologic cancer

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Advances in molecular technology and the completion of the human genome project have ushered in a new era of medicine, that of gene therapy. In every field of medicine, investigators are developing gene therapeutics in an attempt to cure diseases. Urologic oncology is no exception. Herein, we review the current status of gene therapy for urologic malignancy. Included is an overview of advances in gene delivery systems and immunology, which are driving forces for gene therapy research. Finally, we review the current gene therapy trials and experimental approaches for urologic malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Rowe T: Proc Soc Exp Biol Med 1953, 84:570–573.

    PubMed  CAS  Google Scholar 

  2. Trapnell B, Ca GM: Gene therapy using adenoviral vectors. Curr Opin Biotechnol 1994, 5:617–625.

    Article  PubMed  CAS  Google Scholar 

  3. Nemerow GR: Cell receptors involved in adenovirus entry. Virology 2000, 274(1):1–4. Excellent report detailing the process whereby an ADV enters the target cell.

    Article  PubMed  CAS  Google Scholar 

  4. Nemerow GR, Stewart PL: Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 1999, 63:725–734.

    PubMed  CAS  Google Scholar 

  5. Bergelson JM, Cunningham JA, Droguett G, et al.: Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275:1320–1323.

    Article  PubMed  CAS  Google Scholar 

  6. Li Y, Pong RC, Bergelson JM, et al.: Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999, 59:325–330.

    PubMed  CAS  Google Scholar 

  7. Bajaj B, Lei P, Andreadis ST: High efficiencies of gene transfer with immobilized recombinant retrovirus: kinetics and optimization. Biotechnol Prog 2001, 17:587–596.

    Article  PubMed  CAS  Google Scholar 

  8. Logg CR, Tai CK, Logg A, et al.: A uniquely stable replicationcompetent retrovirus vector achieves efficient gene delivery in vitro and in solid tumors. Hum Gene Ther 2001, 12:921–932.

    Article  PubMed  CAS  Google Scholar 

  9. Rothmann T, Hengstermann A, Whitaker NJ, et al.: Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998, 72:9470–9478.

    PubMed  CAS  Google Scholar 

  10. Rodriguez R, Schuur ER, Lim HY, et al.: Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997, 57:2559–2563.

    PubMed  CAS  Google Scholar 

  11. Hardy S, Kitamura M, Harris-Stansil T, et al.: Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997, 71:1842–1849.

    PubMed  CAS  Google Scholar 

  12. Prince HM: Gene transfer: a review of methods and applications. Pathology 1998, 30:335–347.

    Article  PubMed  CAS  Google Scholar 

  13. Fleming J, Ginn SL, Weinberger RP, et al.: Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. Hum Gene Ther 2001, 12:77–86. Recent study establishing the ability of AAV to infect nondividing cells.

    Article  PubMed  CAS  Google Scholar 

  14. Amado RG, Chen IS: Lentiviral vectors—the promise of gene therapy within reach ? Science 1999, 285:674–676.

    Article  PubMed  CAS  Google Scholar 

  15. Colaco CA: Why are dendritic cells central to cancer immunotherapy? Mol Med Today 1999, 5:14–17.

    Article  PubMed  CAS  Google Scholar 

  16. Salgaller ML, Tjoa BA, Lodge PA, et al.: Dendritic cell-based immunotherapy of prostate cancer. Crit Rev Immunol 1998, 18:109–119.

    PubMed  CAS  Google Scholar 

  17. Murphy GP, Tjoa BA, Simmons SJ, et al.: Higher-dose and less frequent dendritic cell infusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients. Prostate 2000, 43:59–62.

    Article  PubMed  CAS  Google Scholar 

  18. Greenfield EA, Nguyen KA, Kuchroo VK: CD28/B7 costimulation: a review. Crit Rev Immunol 1998, 18:389–418.

    PubMed  CAS  Google Scholar 

  19. Kwon ED, Hurwitz AA, Foster BA, et al.: Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A 1997, 94:8099–8103.

    Article  PubMed  CAS  Google Scholar 

  20. Kelso A: Cytokines: principles and prospects. Immunol Cell Biol 1998, 76:300–317.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg SA: Cancer therapy with interleukin-2: immunologic manipulations can mediate the regression of cancer in humans. J Clin Oncol 1988, 6:403–406.

    PubMed  CAS  Google Scholar 

  22. Simmons SJ, Tjoa BA, Rogers M, et al.: GM-CSF as a systemic adjuvant in a phase II prostate cancer vaccine trial. Prostate 1999, 39:291–297.

    Article  PubMed  CAS  Google Scholar 

  23. Boulikas T: Gene therapy of prostate cancer: p53, suicidal genes, and other targets. Anticancer Res 1997, 17:1471–1505.

    PubMed  CAS  Google Scholar 

  24. Sanda MG, Restifo NP, Walsh JC, et al.: Molecular characterization of defective antigen processing in human prostate cancer [see comments]. J Natl Cancer Inst 1995, 87:280–285.

    Article  PubMed  CAS  Google Scholar 

  25. Simons JW, Mikhak B, Chang JF, et al.: Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colonystimulating factor using ex vivo gene transfer. Cancer Res 1999, 59:5160–5168.

    PubMed  CAS  Google Scholar 

  26. Hull GW, Mccurdy MA, Nasu Y, et al.: Prostate cancer gene therapy: comparison of adenovirus-mediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin Cancer Res 2000, 6:4101–4109.

    PubMed  CAS  Google Scholar 

  27. Belldegrun A, Tso CL, Zisman A, et al.: Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum Gene Ther 2001, 12:883–892. Recent investigation showing evidence of increased T cell infiltration when prostate specimens were examined after therapy.

    Article  PubMed  CAS  Google Scholar 

  28. O’Keefe DS, Uchida A, Bacich DJ, et al.: Prostate-specific suicide gene therapy using the prostate-specific membrane antigen promoter and enhancer. Prostate 2000, 45:149–157.

    Article  PubMed  CAS  Google Scholar 

  29. Yu DC, Chen Y, Seng M, et al.: The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999, 59:4200–4203.

    PubMed  CAS  Google Scholar 

  30. Okegawa T, Li Y, Pong RC, et al.: The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 2000, 60:5031–5036.

    PubMed  CAS  Google Scholar 

  31. Thurnher M, Rieser C, Holtl L, et al.: Dendritic cell-based immunotherapy of renal cell carcinoma. Urol Int 1998, 61:67–71.

    Article  PubMed  CAS  Google Scholar 

  32. Kugler A, Stuhler G, Walden P, et al.: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids [see comments]. Nat Med 2000, 6:332–336. A widely discussed and provocative report.

    Article  PubMed  CAS  Google Scholar 

  33. Rini BI, Selk LM, Vogelzang NJ: Phase I study of direct intralesional gene transfer of HLA-B7 into metastatic renal carcinoma lesions. Clin Cancer Res 1999, 5:2766–2772.

    PubMed  CAS  Google Scholar 

  34. Wang LH, Ju DW, Sun Y, et al.: The potent antitumor effects of combined p16 gene and GM-CSF gene therapy through efficient induction of antitumor immunity. J Cancer Res Clin Oncol 2001, 127:101–108.

    Article  PubMed  CAS  Google Scholar 

  35. Bishop JS, Thull NM, Matar M, et al.: Antitumoral effect of a nonviral interleukin-2 gene therapy is enhanced by combination with 5-fluorouracil. Cancer Gene Ther 2000, 7:1165–1171.

    Article  PubMed  CAS  Google Scholar 

  36. Moon WC, Moon CS: Experimental p53 gene therapy in renal cell carcinoma. J Urol 1996, 155:653A.

    Article  Google Scholar 

  37. Chen F, Kishida T, Duh FM, et al.: Suppression of growth of renal carcinoma cells by the von Hippel-Lindau tumor suppressor gene. Cancer Res 1995, 55:4804–4807.

    PubMed  CAS  Google Scholar 

  38. Lee CT, Seol JY, Park KH, et al.: Differential effects of adenovirus-p16 on bladder cancer cell lines can be overcome by the addition of butyrate. Clin Cancer Res 2001, 7:210–214.

    PubMed  CAS  Google Scholar 

  39. Connor RJ, Engler H, Machemer T, et al.: Identification of polyamides that enhance adenovirus-mediated gene expression in the urothelium. Gene Ther 2001, 8:41–48.

    Article  PubMed  CAS  Google Scholar 

  40. Larchian WA, RK, Robertson C, et al.: Liposomal mediated gene transfer in bladder cancer cells. J Urol 1997, 157:1196A.

    Article  Google Scholar 

  41. Larchian WA, Horiguchi Y, Nair SK, et al.: Effectiveness of combined interleukin 2 and B7.1 vaccination strategy is dependent on the sequence and order: a liposome-mediated gene therapy treatment for bladder cancer. Clin Cancer Res 2000, 6:2913–2920.

    PubMed  CAS  Google Scholar 

  42. Oyama M, Ohigashi T, Hoshi M, et al.: Intravesical and intravenous therapy of human bladder cancer by the herpes vector G207. Hum Gene Ther 2000, 11:1683–1693.

    Article  PubMed  CAS  Google Scholar 

  43. Inoue K, Perrotte P, Wood CG, et al.: Gene therapy of human bladder cancer with adenovirus-mediated antisense basic fibroblast growth factor. Clin Cancer Res 2000, 6:4422–4431.

    PubMed  CAS  Google Scholar 

  44. Sutton MA, Berkman SA, Chen SH, et al.: Adenovirus-mediated suicide gene therapy for experimental bladder cancer. Urology 1997, 49:173–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, F.A., Rodriguez, R. Gene therapy for urologic cancer. Curr Urol Rep 3, 75–81 (2002). https://doi.org/10.1007/s11934-002-0014-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-002-0014-7

Keywords

Navigation