Skip to main content

Advertisement

Log in

A novel method for the analysis of the androgen receptor

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The role of the androgen receptor in the regulation of prostate cancer development and progression has been a focus of intense research. Until recent years, the level of expression of the androgen receptor protein was described qualitatively. Immunohistochemical parameters have been established that show a linear relationship between androgen receptor expression and immunostaining. Intensity of immunostaining can be accurately measured using computerassisted color video image analysis. Studies of progression and treatment of prostate cancer will benefit from the ability to quantitatively measure androgen receptor expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Huggins C, Hodge CV: The effects of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941, 1:942.

    Google Scholar 

  2. Brolin J, Ekman P: Microassays for androgen and progesterone receptor quantitation as compared with standard saturation analysis in human prostatic tissues. Urol Res 1991, 19:333–336.

    Article  PubMed  CAS  Google Scholar 

  3. Tsai MJ, O’Malley BW: Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Ann Rev Biochemistry 1994, 63:451–486.

    Article  CAS  Google Scholar 

  4. Fang S, Anderson KM, Liao S: Receptor proteins for androgens: on the role of specific proteins in selective retention of 17-beta-hydroxy-5-alpha-androstan-3-one by rat ventral prostate in vivo and in vitro. J Biol Chem 1969, 244:6584–6595.

    PubMed  CAS  Google Scholar 

  5. Chang C, Kokontis J, Liao S: Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science 1988, 240:324–326.

    Article  PubMed  CAS  Google Scholar 

  6. Lubahn DB, Joseph DR, Sullivan PM, et al.: Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science 1988, 240:327–330.

    Article  PubMed  CAS  Google Scholar 

  7. Schoenberg MP, Hakimi JM, Wang S, et al.: Microsatellite mutation (CAG24-18) in the androgen receptor gene in human prostate cancer. Biochem Biophys Res Commun 1994, 198:74–80.

    Article  PubMed  CAS  Google Scholar 

  8. Chamberlain NL, Driver ED, Miesfeld RL: The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 1994, 22:3181–3186.

    Article  PubMed  CAS  Google Scholar 

  9. Irvine RA, Yu MC, Ross RK, Coetzee GA: The CAG and GGC microsatellites of the androgen receptor gene are in linkage disequilibrium in men with prostate cancer. Cancer Res 1995, 55:1937–1940.

    PubMed  CAS  Google Scholar 

  10. Gerber HP, Seipel K, Georgiev O, et al.: Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 1994, 263:808–811.

    Article  PubMed  CAS  Google Scholar 

  11. Choong CS, Kemppainen JA, Zhou A, Wilson EM: Reduced androgen receptor gene expression with first exon CAG repeat expansion. Mol Endocrinol 1996, 10:1527–1535.

    Article  PubMed  CAS  Google Scholar 

  12. Murtha P, Tindall DJ, Young YF: Androgen induction of a human prostate-specific kallikrein, hKLK2: characterization of an androgen response element in the 5′ promoter region of the gene. Biochemistry 1993, 32:6459–6464.

    Article  PubMed  CAS  Google Scholar 

  13. Langley E, Shou ZX, Wilson EM: Evidence for an anti-parallel orientation of the ligand human androgen receptor dimer. J Biol Chem 1995, 270:29983–29990.

    Article  PubMed  CAS  Google Scholar 

  14. Veldscholte J, Berrevoets CA, Brinkman AO, et al.: Anti-androgens and the mutated androgen receptor of LNCaP cells: differential effects on binding affinity, heat-shock protein interaction, and transcription activation. Biochemistry 1992, 31:2393–2399.

    Article  PubMed  CAS  Google Scholar 

  15. Kallio PJ, Janne OA, Palvimo JJ: Agonists, but not antagonists, alter the conformation of the hormone-binding domain of the androgen receptor. Endocrinology 1994, 134:998–1001.

    Article  PubMed  CAS  Google Scholar 

  16. Walsh PC, Madden JD, Harrod MJ, et al.: Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N Engl J Med 1974, 291:944–949.

    Article  PubMed  CAS  Google Scholar 

  17. Ogryzko VV, Kotani T, Zhang X, et al.: Histone-like TAFs with the PCAF histone acetylase complex. Cell 1998, 94:35–44. Elucidation of coactivator mechanisms of action.

    Article  PubMed  CAS  Google Scholar 

  18. Kang H, Yeh S, Fujimoto N: Cloning and characterization of human prostate coactivator ARA54, a novel protein that associates with androgen receptor. J Biol Chem 1999, 274:8570–8576.

    Article  PubMed  CAS  Google Scholar 

  19. Fujimoto N, Yeh S, Kang H: Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. J Biol Chem 1999, 274:8316–8321.

    Article  PubMed  CAS  Google Scholar 

  20. Oñate SA, Tsai SY, Tsai M: Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995, 270:1354–1357.

    Article  PubMed  Google Scholar 

  21. Li H, Gomes PJ, Chen JD: RAC3, a steroid/nuclear receptorassociated coactivator that is related to SRC-1 and TIF2. Proc Natl Acad Sci U S A 1997, 94:8479–8484.

    Article  PubMed  CAS  Google Scholar 

  22. Vogel JJ, Heine MJS, Zechel C: TIF2, a 160-kDa transcription mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 1996, 15:3667–3675.

    Google Scholar 

  23. Miyamoto H, Yeh S, Wilding G, Chang C: Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA 70, in human prostate cancer DU145 cells. Proc Natl Acad Sci U S A 1998, 95:7379–7384. Mechanisms showing how androgen receptor activation may occur in the presence of low ligand levels if sufficient amounts of coactivators are present.

    Article  PubMed  CAS  Google Scholar 

  24. Coons AH, Creech HJ, Jones RN: Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol Med 1941, 47:200–202.

    CAS  Google Scholar 

  25. Köhler G, Milstein C: Continuous cultures of fused cells producing antibodies of predefined specificity. Nature 1975, 256:495–497.

    Article  PubMed  Google Scholar 

  26. Sar M: Application of avidin-biotin complex technique to the localization of estradiol receptor in target tissues using monoclonal antibodies. In Techniques in Immunocytochemistry. Edited by Bullock GR, Petrusz P. New York: Academic Press; 1985:43–54.

    Google Scholar 

  27. Tan JA, Joseph DR, Quarmby VE, et al.: The rat androgen receptor: primary structure, autoregulation of its messenger RNA and immunocytochemical localization of the androgen receptor protein. Mol Endocrinol 1988, 2:1276–1285.

    PubMed  CAS  Google Scholar 

  28. Quarmby VE, Kemppaininen JA, Sar M, et al.: Expression of recombinant androgen receptor in cultured mammalian cells. Mol Endocrinol 1990, 4:1399–1407.

    Article  PubMed  CAS  Google Scholar 

  29. Benno RH, Tucker LW, Joh TH, Reis DJ: Quantitative immunocytochemistry of tyrosine hydroxylase in rat brain. I. Development of a computer assisted method using the peroxidase-antiperoxidase technique. Brain Res 1982, 246:225–236.

    Article  PubMed  CAS  Google Scholar 

  30. Wainstein MA, He F, Robinson D, et al.: CWR22: androgendependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res 1994, 54:6049–6052.

    PubMed  CAS  Google Scholar 

  31. Kononen J, Bubendorf L, Kallioniemi A, et al.: Tissue microarrays for high-throughput molecule profiling of tumor specimens. Nature Med 1998, 7:767–768.

    Google Scholar 

  32. Kim D, Gregory CW, Smith GJ, Mohler JL: Immunohistochemical quantitation of androgen receptor expression using color video image analysis. Cytometry 1999, 35:2–10. Article describes using color video image analysis for quantitation of the androgen receptor.

    Article  PubMed  CAS  Google Scholar 

  33. Kim D, Charlton JD, Coggins JM, Mohler JL: Semiautomated nuclear shape analysis of prostatic carcinoma and benign prostatic hyperplasia. Anal Quant Cytol Histol 1994, 16:400–414.

    PubMed  CAS  Google Scholar 

  34. Gonzalez RC, Woods RE: Color image processing. In Digital Image Processing. Edited by Gonzalez RC. Reading, MA: Addison-Wesley; 1992:229–237.

    Google Scholar 

  35. Mixze RR, Holdefer RN, Nabors LB: Quantitative immunohistochemistry using an image analyzer. I. Hardware evaluation, image processing, and data analysis. J Neurosci Methods 1988, 26:1–24.

    Article  Google Scholar 

  36. Otsu N: A threshold selection method for gray-level histograms. Trans Systems Man Cybernetics 1979, 9:62–66.

    Article  Google Scholar 

  37. Sadi MV, Barrack ER: Image analysis of androgen receptor immunostaining in metastatic prostate cancer. Heterogeneity as a predictor of response to hormonal therapy. Cancer 1993, 71:2574–2580.

    Article  PubMed  CAS  Google Scholar 

  38. Tilley WD, Lim-Tio SS, Horsfall DJ, et al.: Detection of discrete androgen receptor epitopes in prostate cancer by immunostaining: measurement by color video analysis. Cancer Res 1994, 54:4096–4102.

    PubMed  CAS  Google Scholar 

  39. Prins GS, Sklarew RJ, Pertschuk LP: Image analysis of androgen receptor immunostaining in prostate cancer accurately predicts response to hormonal therapy. J Urol 1998, 159:641–649. Article describes how patterns of immunostaining may be correlated to clinical conditions and outcomes.

    Article  PubMed  CAS  Google Scholar 

  40. Magi-Galluzzi C, Xu X, Hlatky L, et al.: Heterogeneity of androgen receptor content in advanced prostate cancer. Mod Pathol 1997, 10:839–845.

    PubMed  CAS  Google Scholar 

  41. Kim D, Gregory CW, French FS, et al.: Androgen receptor expression and cellular proliferation during transition from androgen-dependent to recurrent growth after castration in the CWR22 prostate cancer xenograft. Am J Pathol 2001, in press.

  42. Hobisch A, Culig Z, Radmayr C, et al.: Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 1995, 55:3068–3072.

    PubMed  CAS  Google Scholar 

  43. Prins GS, Birch L, Greene GL: Androgen receptor localization in different cell types of the adult rat prostate. Endocrinology 1991, 129:3187–3199.

    Article  PubMed  CAS  Google Scholar 

  44. Zegers ND, Claassen E, Neelen C, et al.: Epitope prediction and confirmation for the human androgen receptor: generation of monoclonal antibodies for multi-assay performance following the synthetic peptide strategy. Biochim Biophys Atca 1991, 1:23–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaston, K.E., Harris Ford, O., Singh, S. et al. A novel method for the analysis of the androgen receptor. Curr Urol Rep 3, 67–74 (2002). https://doi.org/10.1007/s11934-002-0013-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-002-0013-8

Keywords

Navigation