Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interactions Between Inflammation and Female Sexual Desire and Arousal Function


Purpose of Review

To describe the current state of research on interactions between inflammation and female sexual function.

Recent Findings

Inflammation may interfere with female sexual desire and arousal via direct (neural) and indirect (endocrine, vascular, social/behavioral) pathways. There are significant sex differences in the effect of inflammation on sexual function, arising from different evolutionary selection pressures on the regulation of reproduction. A variety of inflammation-related conditions are associated with the risk of female sexual dysfunction, including cardiovascular disease, metabolic syndrome, and chronic pain.


Clinical implications include the need for routine assessment for sexual dysfunction in patients with inflammation-related conditions, the potential for anti-inflammatory diets to improve sexual desire and arousal function, and consideration of chronic inflammation as moderator of sexual effects of hormonal treatments. Although the evidence points to a role for inflammation in the development and maintenance of female sexual dysfunction, the precise nature of these associations remains unclear.

This is a preview of subscription content, log in to check access.

Fig. 1


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Jabbour HN, Sales KJ, Catalano RD, Norman JE. Inflammatory pathways in female reproductive health and disease. Reproduction. 2009;138(6):903–19.

  2. 2.

    Spector IP, Carey MP, Steinberg L. The sexual desire inventory: development, factor structure, and evidence of reliability. J Sex Marital Ther. 1996;22(3):175–90.

  3. 3.

    Basson R. The female sexual response: a different model. J Sex Marital Ther. 2000;26(1):51–65.

  4. 4.

    Laan E, Both S. What makes women experience desire? Fem Psychol. 2008;18(4):505–14.

  5. 5.

    Both S, Everaerd W, Laan E. Desire emerges from excitement: A psychophysiological perspective on sexual motivation. In: Janssen E, ed. The Psychophysiology of Sex. Bloomington, IN: Indiana University Press; 2007:327–339.

  6. 6.

    Singer B, Toates FM. Sexual motivation. J Sex Res. 1987;23(4):481–501.

  7. 7.

    Heiman JR, Pfaff D. Sexual arousal and related concepts: an introduction. Horm Behav. 2011;59(5):613–5.

  8. 8.

    Georgiadis JR, Kringelbach ML, Pfaus JG. Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol. 2012;9(9):486–98.

  9. 9.

    Farmer M, Huang L, Apkarian A. 005 Neural networks underlying variants of female sexual dysfunction. J Sex Med. 2017;14(6):e352.

  10. 10.

    Basson R. The female sexual response: a different model. J Sex Marital Ther. 2000;26(1):51–65.

  11. 11.

    Neurath MF, Finotto S. IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev. 2011;22(2):83–9.

  12. 12.

    Holmdahl R, Malmström V, Burkhardt H. Autoimmune priming, tissue attack and chronic inflammation—the three stages of rheumatoid arthritis. Eur J Immunol. 2014;44(6):1593–9.

  13. 13.

    Rosenblat JD, Cha DS, Mansur RB, McIntyre RS. Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;53:23–34.

  14. 14.

    Greaves E, Cousins FL, Murray A, Esnal-Zufiaurre A, Fassbender A, Horne AW, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol. 2014;184(7):1930–9.

  15. 15.

    Boots CE, Jungheim ES. Inflammation and human ovarian follicular dynamics. Semin Reprod Med. 2015;33(4):270–275.

  16. 16.

    Gnainsky Y, Granot I, Aldo P, Barash A, Or Y, Mor G, et al. Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action. Reproduction. 2015;149(1):75–85.

  17. 17.

    Brubaker D, Barbaro A, Chance MR, Mesiano S. A dynamical systems model of progesterone receptor interactions with inflammation in human parturition. BMC Syst Biol. 2016;10(1):79.

  18. 18.

    Sawada M, Itoh Y, Suzumura A, Marunouchi T. Expression of cytokine receptors in cultured neuronal and glial cells. Neurosci Lett. 1993;160(2):131–4.

  19. 19.

    Spangelo BL, Judd AM, Call GB, Zumwalt J, Gorospe WC. Role of the cytokines in the hypothalamic-pituitary-adrenal and gonadal axes. Neuroimmunomodulation. 1995;2(5):299–312.

  20. 20.

    Michaud M, Balardy L, Moulis G, Gaudin C, Peyrot C, Vellas B, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc. 2013;14(12):877–82.

  21. 21.

    Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J. 1990;4(11):2860–7.

  22. 22.

    Kelley KW, Bluthé R-M, Dantzer R, Zhou J-H, Shen W-H, Johnson RW, et al. Cytokine-induced sickness behavior. Brain Behav Immun. 2003;17(1):112–8.

  23. 23.

    Schuerwegh AJ, Dombrecht EJ, Stevens WJ, Van Offel JF, Bridts CH, De Clerck LS. Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthr Cartil. 2003;11(9):681–7.

  24. 24.

    Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. Regulation of the Anti-Inflammatory Cytokines Interleukin-4 and Interleukin-10 during Pregnancy. Front Immunol. 2014;5:1–4

  25. 25.

    Allen JE, Wynn TA. Evolution of Th2 Immunity: A Rapid Repair Response to Tissue Destructive Pathogens. PLoS Pathog. 2011;7(5):e1002003.

  26. 26.

    Yao C, Sakata D, Esaki Y, Li Y, Matsuoka T, Kuroiwa K, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med. 2009;15(6):633–40.

  27. 27.

    Ricciotti E, FitzGerald GA. Prostaglandins and Inflammation. Atertio Thromb Vasc Biol. 2011;31(5):986–1000.

  28. 28.

    Poon DC-H, Ho Y-S, Chiu K, Wong H-L, Chang RC-C. Sickness: From the focus on cytokines, prostaglandins, and complement factors to the perspectives of neurons. Neurosci Biobehav Rev. 2015;57:30–45.

  29. 29.

    Beyer C, González-Flores O, González-Mariscal G. Progesterone receptor participates in the stimulatory effect of LHRH, prostaglandin E2, and cyclic AMP on lordosis and proceptive behaviours in rats. J Neuroendocrinol. 1997;9(8):609–14.

  30. 30.

    McCarthy MM, Nugent BM, Lenz KM. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci. 2017;18(8):471–484.

  31. 31.

    Avitsur R, Weidenfeld J, Yirmiya R. Cytokines inhibit sexual behavior in female rats: II. Prostaglandins mediate the suppressive effects of interleukin-1β. Brain Behav Immun. 1999;13(1):33–45.

  32. 32.

    Goldstein SW, Gonzalez JR, Gagnon C, Goldstein I. Peripheral female genital Arousal as Assessed by Thermography Following Topical Genital Application of alprostadil vs placebo arousal gel: a proof-of-principle study without visual sexual stimulation. Sex Med. 2016;4(3):e166–e75.

  33. 33.

    Cheng JC, Secondary J, Burke WH, Fedoroff JP, Dwyer RG. Neuroimaging and sexual behavior: identification of regional and functional differences. Curr Psychiatry Rep. 2015;17(7):55.

  34. 34.

    Patel A, Zhu Y, Kuzhikandathil EV, Banks WA, Siegel A, Zalcman SS. Soluble interleukin-6 receptor induces motor stereotypies and co-localizes with gp130 in regions linked to cortico-striato-thalamo-cortical circuits. PLoS One. 2012;7(7):e41623.

  35. 35.

    Rothaug M, Becker-Pauly C, Rose-John S. The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta. 2016;1863(6):1218–27.

  36. 36.

    Felger JC, Miller AH. Cytokine effects on the basal ganglia and dopamine function: The subcortical source of inflammatory malaise. Front Neuroendocrinol. 2012;33(3):315–27.

  37. 37.

    Ye JH, Tao L, Zalcman SS. Interleukin-2 modulates N-methyl-d-aspartate receptors of native mesolimbic neurons. Brain Res. 2001;894(2):241–8.

  38. 38.

    Prossin AR, Zalcman SS, Heitzeg MM, Koch AE, Campbell PL, Phan KL, et al. Dynamic interactions between plasma IL-1 family cytokines and central endogenous opioid neurotransmitter function in humans. Neuropsychopharmacology. 2015;40(3):554–65.

  39. 39.

    Yohn SE, Arif Y, Haley A, Tripodi G, Baqi Y, Müller CE, et al. Effort-related motivational effects of the pro-inflammatory cytokine interleukin-6: pharmacological and neurochemical characterization. Psychopharmacology. 2016;233(19-20):3575–86.

  40. 40.

    Pollmächer T, Haack M, Schuld A, Reichenberg A, Yirmiya R. Low levels of circulating inflammatory cytokines—do they affect human brain functions? Brain Behav Immun. 2002;16(5):525–32.

  41. 41.

    Yirmiya R, Avitsur R, Donchin O, Cohen E. Interleukin-1 Inhibits Sexual Behavior in Female but Not in Male Rats. Brain Behav Immun. 1995;9(3):220–33.

  42. 42.

    Avitsur R, Pollak Y, Yirmiya R. Different receptor mechanisms mediate the effects of endotoxin and interleukin-1 on female sexual behavior. Brain Res. 1997;773(1):149–61.

  43. 43.

    •• Avitsur R, Yirmiya R. Cytokines inhibit sexual behavior in female rats: I. Synergistic Effects of Tumor Necrosis Factor α and Interleukin-1. Brain Behav Immun. 1999;13(1):14–32 This classic article outlines a series of studies showing the sex differences in the effect of inflammatory cyotkines on sexual behavior and sexual reward processing.

  44. 44.

    Lorenz T, Heiman J. Inflammation may alter perception of sexual arousal and pleasure in healthy women. Paper presented at: 43rd Annual meeting of the International Academy of Sex Research; July 27 2017;Charleston, SC.

  45. 45.

    Jokinen J, Chatzittofis A, Nordström P, Arver S. The role of neuroinflammation in the pathophysiology of hypersexual disorder. Psychoneuroendocrinology. 2016;71:55.

  46. 46.

    Haake P, Krueger TH, Goebel MU, Heberling KM, Hartmann U, Schedlowski M. Effects of sexual arousal on lymphocyte subset circulation and cytokine production in man. Neuroimmunomodulation. 2004;11(5):293–8.

  47. 47.

    Hart BL. Biological basis of the behavior of sick animals. Neurosci Biobehav Rev. 1988;12(2):123–37.

  48. 48.

    •• Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–60 A classic review of the research on the effects of immune activation on the nervous system and behavior, including sexual behavior.

  49. 49.

    McKean KA, Nunney L. Bateman's principle and immunity: phenotypically plastic reproductive strategies predict changes in immunological sex differences. Evolution. 2005;59(7):1510–7.

  50. 50.

    Chisholm JS, Ellison PT, Evans J, Lee P, Lieberman LS, Pavlik Z, et al. Death, hope, and sex: life-history theory and the development of reproductive strategies [and comments and reply]. Curr Anthropol. 1993;34(1):1–24.

  51. 51.

    Lochmiller RL, Deerenberg C. Trade-offs in evolutionary immunology: Just what is the cost of immunity? Oikos. 2000;88(1):87–98.

  52. 52.

    Lorenz T, Worthman C, Vitzthum VJ. Links between inflammation, sexual activity and ovulation: Evolutionary trade-offs and clinical implications. Evol Med Public Health. 2015;1:304–24.

  53. 53.

    Vitzthum VJ. The ecology and evolutionary endocrinology of reproduction in the human female. Am J Phys Anthropol. 2009;140(S49):95–136.

  54. 54.

    Curtis V, Aunger R, Rabie T. Evidence that disgust evolved to protect from risk of disease. Proc R Soc Lond B Biol Sci. 2004;271(Suppl 4):S131–S3.

  55. 55.

    Miller SL, Maner JK. Sick Body, Vigilant Mind. Psychol Sci. 2011;22(12):1467–71.

  56. 56.

    Stevenson RJ, Hodgson D, Oaten MJ, Sominsky L, Mahmut M, Case TI. Oral immune activation by disgust and disease-related pictures. J Psychophysiol. 2015;29(3):119–29.

  57. 57.

    Oaten MJ, Stevenson RJ, Case TI. Compensatory up-regulation of behavioral disease avoidance in immuno-compromised people with rheumatoid arthritis. Evol Hum Behav. 2017;38(3):350–6.

  58. 58.

    de Jong PJ, van Overveld M, Borg C. Giving in to arousal or staying stuck in disgust? Disgust-based mechanisms in sex and sexual dysfunction. J Sex Res. 2013;50(3-4):247–62.

  59. 59.

    Zsok F, Fleischman DS, Borg C, Morrison E. Disgust trumps lust: women’s disgust and attraction towards men is unaffected by sexual arousal. Evolutionary Psychological Science. 2017;3(4):353–363

  60. 60.

    Fleischman DS, Hamilton LD, Fessler DMT, Meston CM. Disgust versus lust: exploring the interactions of disgust and fear with sexual arousal in women. PLoS One. 2015;10(6):e0118151.

  61. 61.

    Andrews AR, Crone T, Cholka CB, Cooper TV, Bridges AJ. Correlational and experimental analyses of the relation between disgust and sexual arousal. Motiv Emot. 2015;39(5):766–79.

  62. 62.

    Lee EM, Ambler JK, Sagarin BJ. Effects of subjective sexual arousal on sexual, pathogen, and ,moral disgust sensitivity in women and men. Arch Sex Behav. 2014;43(6):1115–21.

  63. 63.

    Grauvogl A, de Jong P, Peters M, Evers S, van Overveld M, van Lankveld J. Disgust and sexual arousal in young adult men and women. Arch Sex Behav. 2015;44(6):1515–25.

  64. 64.

    Fleischman DS. Women’s Disgust Adaptations. In: Weekes-Shackelford VA, Shackelford TK, editors. Evolutionary perspectives on human sexual psychology and behavior. New York: Springer New York; 2014. p. 277–96.

  65. 65.

    Borg C, de Jong PJ, Elgersma H. Sexual aversion and the DSM-5: An excluded disorder with unabated relevance as a trans-diagnostic symptom. Arch Sex Behav. 2014;43(7):1219–23.

  66. 66.

    • Segner H, Verburg-van Kemenade BML, Chadzinska M. The immunomodulatory role of the hypothalamus-pituitary-gonad axis: Proximate mechanism for reproduction-immune trade offs? Dev Comp Immunol. 2017;66:43–60 This review summarizes the state of the literature on the co-regulation of inflammation and gonadal hormones as related to reproductive and sexual function.

  67. 67.

    Molvarec A, Szarka A, Walentin S, Bekő G, Karádi I, Prohászka Z, et al. Serum leptin levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in normal pregnancy and preeclampsia. Reprod Biol Endocrinol. 2011;9(1):124.

  68. 68.

    Sylvia KE, Lorenz TK, Heiman JR, Demas GE. Physiological predictors of leptin vary during menses and ovulation in healthy women. Reprod Biol. 2018;18(1):132–6.

  69. 69.

    Iwasa T, Matsuzaki T, Murakami M, Shimizu F, Kuwahara A, Yasui T, et al. Decreased expression of kisspeptin mediates acute immune/inflammatory stress-induced suppression of gonadotropin secretion in female rat. J Endocrinol Investig. 2008;31(7):656–9.

  70. 70.

    Straub RH. The Complex Role of Estrogens in Inflammation. Endocr Rev. 2007;28(5):521–74.

  71. 71.

    Calabrese EJ. Estrogen and related compounds: biphasic dose responses. Crit Rev Toxicol. 2001;31(4-5):503–15.

  72. 72.

    Chakrabarti S, Lekontseva O, Davidge ST. Estrogen is a modulator of vascular inflammation. IUBMB Life. 2008;60(6):376–82.

  73. 73.

    Puder JJ, Freda PU, Goland RS, Wardlaw SL. Estrogen modulates the hypothalamic-pituitary-adrenal and inflammatory cytokine responses to endotoxin in women1. J Clin Endocrinol Metab. 2001;86(6):2403–8.

  74. 74.

    Rogers A, Eastell R. The effect of 17β-estradiol on production of cytokines in cultures of peripheral blood. Bone. 2001;29(1):30–4.

  75. 75.

    Kim M-S, Chae H-J, Shin T-Y, Kim H-M, Kim H-R. Estrogen regulates cytokine release in human mast cells. Immunopharmacol Immunotoxicol. 2001;23(4):495–504.

  76. 76.

    Crane-Godreau MA, Wira CR. Effects of estradiol on lipopolysaccharide and Pam3Cys stimulation of CCL20/macrophage inflammatory protein 3 alpha and tumor necrosis factor alpha production by uterine epithelial cells in culture. Infect Immun. 2005;73(7):4231–7.

  77. 77.

    Ray P, Ghosh SK, Zhang D-H, Ray A. Repression of interleukin-6 gene expression by 17β-estradiol. FEBS Lett. 1997;409(1):79–85.

  78. 78.

    Shivers K-Y, Amador N, Abrams L, Hunter D, Jenab S, Quiñones-Jenab V. Estrogen alters baseline and inflammatory-induced cytokine levels independent from hypothalamic–pituitary–adrenal axis activity. Cytokine. 2015;72(2):121–9.

  79. 79.

    Villa A, Rizzi N, Vegeto E, Ciana P, Maggi A. Estrogen accelerates the resolution of inflammation in macrophagic cells. Sci Rep. 2015;5:15224.

  80. 80.

    Stock JL, Coderre JA, McDonald B, Rosenwasser LJ. Effects of estrogen in vivo and in vitro on spontaneous interleukin-1 release by monocytes from postmenopausal women. J Clin Endocrinol Metab. 1989;68(2):364–8.

  81. 81.

    Shanker G, Sorci-Thomas M, Register T, Adams M. The inducible expression of THP-1 cell interleukin-1 mRNA: effects of estrogen on differential response to phorbol ester and lipopolysaccharide. Lymphokine Cytokine Res. 1994;13(1):1–7.

  82. 82.

    Polan M, Loukides J, Nelson P, Carding S, Diamond M, Walsh A, et al. Progesterone and estradiol modulate interleukin-1 β messenger ribonucleic acid levels in cultured human peripheral monocytes. J Clin Endocrinol Metab. 1989;69(6):1200–6.

  83. 83.

    Polan ML, Daniele A, Kuo A. Gonadal steroids modulate human monocyte interleukin-1 (IL-1) activity. Fertil Steril. 1988;49(6):964–8.

  84. 84.

    Bamberger C, Schulte H. Molecular mechanisms of dissociative glucocorticoid activity. Eur J Clin Investig. 2000;30(s3):6–9.

  85. 85.

    Tibbetts TA, Conneely OM, O'Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus1. Biol Reprod. 1999;60(5):1158–65.

  86. 86.

    Huang H, He J, Yuan Y, Aoyagi E, Takenaka H, Itagaki T, et al. Opposing effects of estradiol and progesterone on the oxidative stress-induced production of chemokine and proinflammatory cytokines in murine peritoneal macrophages. J Med Investig. 2008;55(1,2):133–41.

  87. 87.

    Battaglia DF, Bowen JM, Krasa HB, Thrun LA, Viguié C, Karsch FJ. Endotoxin inhibits the reproductive neuroendocrine axis while stimulating adrenal steroids: a simultaneous view from hypophyseal portal and peripheral blood. Endocrinology. 1997;138(10):4273–81.

  88. 88.

    Lainez NM, Coss D. Obesity, neuroinflammation and reproductive function. Endocrinology. 2019;160(11):2719–2736

  89. 89.

    Song C, Wang H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(3):760–8.

  90. 90.

    Camille Melón L, Maguire J. GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function. J Steroid Biochem Mol Biol. 2016;160:196–203.

  91. 91.

    Sakumoto R, Shibaya M, Okuda K. Tumor Necrosis Factor-α (TNF α) Inhibits progesterone and estradiol-17β production from cultured granulosa cells: Presence of TNFα Receptors in Bovine Granulosa and Theca Cells. J Reprod Dev. 2003;49(6):441–9.

  92. 92.

    Williams EJ, Sibley K, Miller AN, Lane EA, Fishwick J, Nash DM, et al. ORIGINAL ARTICLE: The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. Am J Reprod Immunol. 2008;60(5):462–73.

  93. 93.

    Terranova PF, Rice VM. Review: Cytokine Involvement in Ovarian Processes. Am J Reprod Immunol. 1997;37(1):50–63.

  94. 94.

    Elovitz M, Wang Z. Medroxyprogesterone acetate, but not progesterone, protects against inflammation-induced parturition and intrauterine fetal demise. Am J Obstet Gynecol. 2004;190(3):693–701.

  95. 95.

    Purohit A, Newman SP, Reed MJ. The role of cytokines in regulating estrogen synthesis: implications for the etiology of breast cancer. Breast Cancer Res. 2002;4(2):65.

  96. 96.

    Al-Safi ZA, Chosich J, Berenbaum K, Bradford A, Santoro N, Polotsky AJ. Reduction of pro-inflammatory cytokines is associated with improvement of gonadotropin sensitivity in obese women. Fertil Steril. 102(3):e3.

  97. 97.

    Puri J, Hutchins B, Bellinger LL, Kramer PR. Estrogen and inflammation modulate estrogen receptor alpha expression in specific tissues of the temporomandibular joint. Reprod Biol Endocrinol. 2009;7:155.

  98. 98.

    Goodman MP. Are All Estrogens Created Equal? A Review of Oral vs. Transdermal Therapy. J Women's Health. 2011;21(2):161–9.

  99. 99.

    Störk S, von Schacky C, Angerer P. The effect of 17β-estradiol on endothelial and inflammatory markers in postmenopausal women: a randomized, controlled trial. Atherosclerosis. 2002;165(2):301–7.

  100. 100.

    Shifren JL, Rifai N, Desindes S, McIlwain M, Doros G, Mazer NA. A comparison of the short-term effects of oral conjugated equine estrogens versus transdermal estradiol on C-reactive protein, other serum markers of inflammation, and other hepatic proteins in naturally menopausal women. J Clin Endocrinol Metab. 2008;93(5):1702–10.

  101. 101.

    Pastor Z, Holla K, Chmel R. The influence of combined oral contraceptives on female sexual desire: A systematic review. Eur J Contracept Reprod Health Care. 2013;18(1):27–43.

  102. 102.

    Alexander JL, Kotz K, Dennerstein L, Kutner SJ, Wallen K, Notelovitz M. The effects of postmenopausal hormone therapies on female sexual functioning: a review of double-blind, randomized controlled trials. Menopause. 2004;11(6):749–65.

  103. 103.

    Sanders SA, Graham CA, Bass JL, Bancroft J. A prospective study of the effects of oral contraceptives on sexuality and well-being and their relationship to discontinuation. Contraception. 2001;64(1):51–8.

  104. 104.

    Wallwiener M, Wallwiener L-M, Seeger H, Mueck AO, Zipfel S, Bitzer J, et al. Effects of sex hormones in oral contraceptives on the female sexual function score: a study in German female medical students. Contraception. 2010;82(2):155–9.

  105. 105.

    Zethraeus N, Dreber A, Ranehill E, Blomberg L, Labrie F, von Schoultz B, et al. Combined oral contraceptives and sexual function in women—a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(11):4046–53.

  106. 106.

    González M, Viáfara G, Caba F, Molina E. Sexual function, menopause and hormone replacement therapy (HRT). Maturitas. 2004;48(4):411–20.

  107. 107.

    Nappi RE, Polatti F. Continuing medical education: the use of estrogen therapy in women's sexual functioning (CME). J Sex Med. 2009;6(3):603–16.

  108. 108.

    Klein SL. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev. 2000;24(6):627–38.

  109. 109.

    Konecna L, Yan MS, Miller LE, Schölmerich J, Falk W, Straub RH. Modulation of IL-6 production during the menstrual cycle in vivo and in vitro. Brain Behav Immun. 2000;14(1):49–61.

  110. 110.

    Maggio M, Ceda GP, Lauretani F, Bandinelli S, Corsi AM, Giallauria F, et al. SHBG, sex hormones, and inflammatory markers in older women. J Clin Endocrinol Metab. 2011;96(4):1053–9.

  111. 111.

    Maggio M, Basaria S, Ble A, Lauretani F, Bandinelli S, Ceda GP, et al. Correlation between testosterone and the inflammatory marker soluble interleukin-6 receptor in older men. J Clin Endocrinol Metab. 2006;91(1):345–7.

  112. 112.

    Joffe HV, Ridker PM, Manson JE, Cook NR, Buring JE, Rexrode KM. Sex hormone-binding globulin and serum testosterone are inversely associated with C-reactive protein levels in postmenopausal women at high risk for cardiovascular disease. Ann Epidemiol. 2006;16(2):105–12.

  113. 113.

    Maturana MA, Breda V, Lhullier F, Spritzer PM. Relationship between endogenous testosterone and cardiovascular risk in early postmenopausal women. Metabolism. 2008;57(7):961–5.

  114. 114.

    Prasad A, Mumford SL, Buck Louis GM, Ahrens KA, Sjaarda LA, Schliep KC, et al. Sexual activity, endogenous reproductive hormones and ovulation in premenopausal women. Horm Behav. 2014;66(2):330–8.

  115. 115.

    Lorenz T, Heiman JR, Demas GE. Testosterone and immune-reproductive tradeoffs in healthy women. Horm Behav. 2017;88:122–30.

  116. 116.

    Posma E, Moes H, Heineman MJ, Faas MM. The effect of testosterone on cytokine production in the specific and non-specific immune response. Am J Reprod Immunol. 2004;52(4):237–43.

  117. 117.

    Corcoran MP, Meydani M, Lichtenstein AH, Schaefer EJ, Dillard A, Lamon-Fava S. Sex hormone modulation of proinflammatory cytokine and C-reactive protein expression in macrophages from older men and postmenopausal women. J Endocrinol. 2010;206(2):217–24.

  118. 118.

    Huang G, Tang E, Aakil A, Anderson S, Jara H, Davda M, et al. Testosterone dose-response relationships with cardiovascular risk markers in androgen-deficient women: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2014;99(7):E1287–E93.

  119. 119.

    Herbst KL, Calof OM, Hsia SH, Sinha-Hikim I, Woodhouse LJ, Buchanan TA, et al. Effects of transdermal testosterone administration on insulin sensitivity, fat mass and distribution, and markers of inflammation and thrombolysis in human immunodeficiency virus–infected women with mild to moderate weight loss. Fertil Steril. 2006;85(6):1794–802.

  120. 120.

    Stephenson K, Neuenschwander PF, Kurdowska AK. The effects of compounded bioidentical transdermal hormone therapy on hemostatic, inflammatory, immune factors; cardiovascular biomarkers; quality-of-life measures; and health outcomes in perimenopausal and postmenopausal women. Int J Pharm Compd. 2013;17(1):74–85.

  121. 121.

    Tsigos C, Papanicolaou DA, Kyrou I, Raptis SA, Chrousos GP. Dose-dependent effects of recombinant human interleukin-6 on the pituitary-testicular axis. J Interf Cytokine Res. 1999;19(11):1271–6.

  122. 122.

    van der Poll T, Romijn JA, Endert E, Sauerwein HP. Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism. 1993;42(3):303–7.

  123. 123.

    Benson S, Janssen O, Hahn S, Tan S, Dietz T, Mann K, et al. Obesity, depression, and chronic low-grade inflammation in women with polycystic ovary syndrome. Brain Behav Immun. 2008;22(2):177–84.

  124. 124.

    Purohit A, Ghilchik MW, Duncan L, Wang DY, Singh A, Walker MM, et al. Aromatase activity and interleukin-6 production by normal and malignant breast tissues. J Clin Endocrinol Metab. 1995;80(10):3052–8.

  125. 125.

    Macdiarmid F, Wang D, Duncan LJ, Purohit A, Ghilchik MW, Reed MJ. Stimulation of aromatase activity in breast fibroblasts by tumor necrosis factor. Mol Cell Endocrinol. 1994;106(1):17–21.

  126. 126.

    Wåhlin-Jacobsen S, Pedersen AT, Kristensen E, Læssøe NC, Lundqvist M, Cohen AS, et al. Is there a correlation between androgens and sexual desire in women? J Sex Med. 2015;12(2):358–73.

  127. 127.

    Leiblum S, Bachmann G, Kemmann E, Colburn D, Swartzman L. Vaginal atrophy in the postmenopausal woman: the importance of sexual activity and hormones. JAMA. 1983;249(16):2195–8.

  128. 128.

    Goldey KL, van Anders SM. Sexy thoughts: effects of sexual cognitions on testosterone, cortisol, and arousal in women. Horm Behav. 2011;59(5):754–64.

  129. 129.

    van Anders S. Testosterone and sexual desire in healthy women and men. Arch Sex Behav. 2012;41(6):1471–84.

  130. 130.

    Goldey KL, van Anders S. Sexy thoughts: effects of sexual cognitions on testosterone, cortisol, and arousal in women. Horm Behav. 2011;59(5):754–64.

  131. 131.

    Roney JR, Simmons ZL. Hormonal predictors of sexual motivation in natural menstrual cycles. Horm Behav. 2013;63(4):636–45.

  132. 132.

    Van Anders S, Brotto L, Farrell J, Yule M. Associations among physiological and subjective sexual response, sexual desire, and salivary steroid hormones in healthy premenopausal women. J Sex Med. 2009;6(3):739–51.

  133. 133.

    van Anders S, Watson NV. Testosterone levels in women and men who are single, in long-distance relationships, or same-city relationships. Horm Behav. 2007;51(2):286–91.

  134. 134.

    Van Anders S, Goldey KL. Testosterone and partnering are linked via relationship status for women and ‘relationship orientation’for men. Horm Behav. 2010;58(5):820–6.

  135. 135.

    Elraiyah T, Sonbol MB, Wang Z, Khairalseed T, Asi N, Undavalli C, et al. The benefits and harms of systemic testosterone therapy in postmenopausal women with normal adrenal function: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(10):3543–50.

  136. 136.

    Achilli C, Pundir J, Ramanathan P, Sabatini L, Hamoda H, Panay N. Efficacy and safety of transdermal testosterone in postmenopausal women with hypoactive sexual desire disorder: a systematic review and meta-analysis. Fertil Steril. 2017;107(2):475–82.e15.

  137. 137.

    Reed BG, Bou Nemer L, Carr BR. Has testosterone passed the test in premenopausal women with low libido? A systematic review. Int J Women's Health. 2016;8:599–607.

  138. 138.

    Cappelletti M, Wallen K. Increasing women's sexual desire: The comparative effectiveness of estrogens and androgens. Horm Behav. 2016;78:178–93.

  139. 139.

    Blaicher W, Gruber D, Bieglmayer C, Blaicher AM, Knogler W, Huber JC. The Role of Oxytocin in Relation to Female Sexual Arousal. Gynecol Obstet Investig. 1999;47(2):125–6.

  140. 140.

    Carmichael MS, Warburton VL, Dixen J, Davidson JM. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch Sex Behav. 1994;23(1):59–79.

  141. 141.

    Carter CS. Oxytocin and sexual behavior. Neurosci Biobehav Rev. 1992;16(2):131–44.

  142. 142.

    Caruso S, Mauro D, Scalia G, Palermo CI, Rapisarda AMC, Cianci A. Oxytocin plasma levels in orgasmic and anorgasmic women. Gynecol Endocrinol. 2017;34(1):69–72

  143. 143.

    Clodi M, Vila G, Geyeregger R, Riedl M, Stulnig TM, Struck J, et al. Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol Endocrinol Metab. 2008;295(3):E686–E91.

  144. 144.

    Szeto A, Sun-Suslow N, Mendez AJ, Hernandez RI, Wagner KV, McCabe PM. Regulation of the macrophage oxytocin receptor in response to inflammation. Am J Physiol Endocrinol Metab. 2017;312(3):E183–E9.

  145. 145.

    Yuan L, Liu S, Bai X, Gao Y, Liu G, Wang X, et al. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J Neuroinflammation. 2016;13(1):77.

  146. 146.

    Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol. 2009;78(6):539–52.

  147. 147.

    Huang AL, Vita JA. Effects of systemic inflammation on endothelium-dependent vasodilation. Trends Cardiovasc Med. 2006;16(1):15–20.

  148. 148.

    Bouloukaki I, Papadimitriou V, Sofras F, Mermigkis C, Moniaki V, Siafakas NM, et al. Abnormal cytokine profile in patients with obstructive sleep apnea-hypopnea syndrome and erectile dysfunction. Mediat Inflamm. 2014;2014:7.

  149. 149.

    Carneiro FS, Webb RC, Tostes RC. Emerging Role for TNF-α in Erectile Dysfunction. J Sex Med. 2010;7(12):3823–34.

  150. 150.

    Carneiro FS, Zemse S, Giachini FR, Carneiro ZN, Lima VV, Webb RC, et al. TNF-α infusion impairs corpora cavernosa reactivity. J Sex Med. 2009;6(S3):311–9.

  151. 151.

    Matos G, Hirotsu C, Alvarenga TA, Cintra F, Bittencourt L, Tufik S, et al. The association between TNF-α and erectile dysfunction complaints. Andrology. 2013;1(6):872–8.

  152. 152.

    Carneiro FS, Sturgis LC, Giachini FRC, Carneiro ZN, Lima VV, Wynne BM, et al. TNF-α knockout mice have increased corpora cavernosa relaxation. J Sex Med. 2009;6(1):115–25.

  153. 153.

    Munarriz R, Kim SW, Kim NN, Traish A, Goldstein I. A review of the physiology and pharmacology of peripheral (vaginal and clitoral) female genital arousal in the animal model. J Urol. 2003;170(2):S40–S5.

  154. 154.

    Wesselmann U, Bonham A, Foster D. Vulvodynia: current state of the biological science. Pain. 2014;155(9):1696–701.

  155. 155.

    Pukall CF, Cahill CM. New developments in the pathophysiology of genital pain: role of central sensitization. Curr Sex Health Rep. 2014;6(1):11–9.

  156. 156.

    Fugl-Meyer KS, Bohm-Starke N, Damsted Petersen C, Fugl-Meyer A, Parish S, Giraldi A. Standard operating procedures for female genital sexual pain. J Sex Med. 2013;10(1):83–93.

  157. 157.

    Masheb RM, Lozano-Blanco C, Kohorn EI, Minkin MJ, Kerns RD. Assessing sexual function and dyspareunia with the female sexual function index (FSFI) in women with vulvodynia. J Sex Marital Ther. 2004;30(5):315–24.

  158. 158.

    Avitsur R, Cohen E, Yirmiya R. Effects of interleukin-1 on sexual attractivity in a model of sickness behavior. Physiol Behav. 1997;63(1):25–30.

  159. 159.

    Klein SL, Nelson RJ. Activation of the immune–endocrine system with lipopolysaccharide reduces affiliative behaviors in voles. Behav Neurosci. 1999;113(5):1042–8.

  160. 160.

    Olsson MJ, Lundström JN, Kimball BA, Gordon AR, Karshikoff B, Hosseini N, et al. The scent of disease: human body odor contains an early chemosensory cue of sickness. Psychol Sci. 2014;25(3):817–23.

  161. 161.

    Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150(3):257–66.

  162. 162.

    Regenbogen C, Axelsson J, Lasselin J, Porada DK, Sundelin T, Peter MG, et al. Behavioral and neural correlates to multisensory detection of sick humans. Proc Natl Acad Sci. 2017;114(24):6400–5.

  163. 163.

    Baumeister RF. Gender differences in erotic plasticity: the female sex drive as socially flexible and responsive. Psychol Bull. 2000;126(3):347.

  164. 164.

    Dong J-Y, Zhang Y-H, Qin L-Q. Erectile dysfunction and risk of cardiovascular disease: meta-analysis of prospective cohort studies. J Am Coll Cardiol. 2011;58(13):1378–85.

  165. 165.

    Vlachopoulos C, Aznaouridis K, Ioakeimidis N, Rokkas K, Vasiliadou C, Alexopoulos N, et al. Unfavourable endothelial and inflammatory state in erectile dysfunction patients with or without coronary artery disease. Eur Heart J. 2006;27(22):2640–8.

  166. 166.

    Giugliano F, Esposito K, Di Palo C, Ciotola M, Giugliano G, Marfella R, et al. Erectile dysfunction associates with endothelial dysfunction and raised proinflammatory cytokine levels in obese men. J Endocrinol Investig. 2004;27(7):665–9.

  167. 167.

    Luciano Rodrigues F, Sobrano Fais R, Tostes CR, Carneiro FS. There is a link between erectile dysfunction and heart failure: it could be inflammation. Curr Drug Targets. 2015;16(5):442–50.

  168. 168.

    Drory Y, Kravetz S, Weingarten M. Infarction ISGoFAM. Comparison of sexual activity of women and men after a first acute myocardial infarction. Am J Cardiol. 2000;85(11):1283–7.

  169. 169.

    Steinke EE. Sexual dysfunction in women with cardiovascular disease: what do we know? J Cardiovasc Nurs. 2010;25(2):151–8.

  170. 170.

    Oren A, Megiddo E, Banai S, Justo D. Sexual dysfunction, cardiovascular risk factors, and inflammatory biomarkers in women undergoing coronary angiography. J Women Aging. 2016;28(3):203–10.

  171. 171.

    Doumas M, Tsiodras S, Tsakiris A, Douma S, Chounta A, Papadopoulos A, et al. Female sexual dysfunction in essential hypertension: a common problem being uncovered. J Hypertens. 2006;24(12):2387–92.

  172. 172.

    Thomas HN, Evans GW, Berlowtiz DR, Chertow GM, Conroy MB, Foy CG, et al. Antihypertensive medications and sexual function in women: baseline data from the Systolic Blood Pressure Intervention Trial (SPRINT). J Hypertens. 2016;34(6):1224–31.

  173. 173.

    Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–50.

  174. 174.

    Martelli V, Valisella S, Moscatiello S, Matteucci C, Lantadilla C, Costantino A, et al. Prevalence of sexual dysfunction among postmenopausal women with and without metabolic syndrome. J Sex Med. 2012;9(2):434–41.

  175. 175.

    Trompeter SE, Bettencourt R, Barrett-Connor E. Metabolic syndrome and sexual function in postmenopausal women. Am J Med. 2016;129(12):1270–7.e1.

  176. 176.

    Esposito K, Maiorino MI, Bellastella G, Giugliano F, Romano M, Giugliano D. Determinants of female sexual dysfunction in type 2 diabetes. Int J Impot Res. 2010;22(3):179–84.

  177. 177.

    Otunctemur A, Dursun M, Ozbek E, Sahin S, Besiroglu H, Koklu I, et al. Effect of metabolic syndrome on sexual function in pre- and postmenopausal women. J Sex Marital Ther. 2015;41(4):440–9.

  178. 178.

    Ponholzer A, Temml C, Rauchenwald M, Marszalek M, Madersbacher S. Is the metabolic syndrome a risk factor for female sexual dysfunction in sexually active women? Int J Impot Res. 2008;20(1):100.

  179. 179.

    Esposito K, Ciotola M, Marfella R, Di Tommaso D, Cobellis L, Giugliano D. The metabolic syndrome: a cause of sexual dysfunction in women. Int J Impot Res. 2005;17(3):224.

  180. 180.

    Marchand F, Perretti M, McMahon SB. Role of the immune system in chronic pain. Nat Rev Neurosci. 2005;6(7):521.

  181. 181.

    Timmer A, Bauer A, Dignass A, Rogler G. Sexual function in persons with inflammatory bowel disease: a survey with matched controls. Clin Gastroenterol Hepatol. 2007;5(1):87–94

  182. 182.

    Timmer A, Kemptner D, Bauer A, Takses A, Ott C, Fürst A. Determinants of female sexual function in inflammatory bowel disease: a survey based cross-sectional analysis. BMC Gastroenterol. 2008;8(1):45.

  183. 183.

    Zhang Q, Zhou C, Chen H, et al. Rheumatoid arthritis is associated with negatively variable impacts on domains of female sexual function: evidence from a systematic review and meta-analysis. Psychol Health Med. 2017;23(1):114–125.

  184. 184.

    Aydin G, Başar MM, Keleş I, Ergün G. Orkun Sm, Batı̇slam E. Relationship between sexual dysfunction and psychiatric status in premenopausal women with fibromyalgia. Urology. 2006;67(1):156–61.

  185. 185.

    Reed BD, Haefner HK, Punch MR, Roth RS, Gorenflo DW, Gillespie BW. Psychosocial and sexual functioning in women with vulvodynia and chronic pelvic pain. A comparative evaluation. J Reprod Med. 2000;45(8):624–32.

  186. 186.

    Lin M-C, Lu M-C, Livneh H, Lai N-S, Guo H-R, Tsai T-Y. Factors associated with sexual dysfunction in Taiwanese females with rheumatoid arthritis. BMC Womens Health. 2017;17(1):12.

  187. 187.

    Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–82.

  188. 188.

    Patel DP, Schenk JM, Darke A, Myers JB, Brant WO, Hotaling JM. Non-steroidal anti-inflammatory drug (NSAID) use is not associated with erectile dysfunction risk: results from the Prostate Cancer Prevention Trial. BJU Int. 2016;117(3):500–6.

  189. 189.

    Kupelian V, Hall SA, McKinlay JB. Common prescription medication use and erectile dysfunction: results from the Boston Area Community Health (BACH) survey. BJU Int. 2013;112(8):1178–87.

  190. 190.

    Shiri R, Koskimäki J, Häkkinen J, Tammela TLJ, Auvinen A, Hakama M. Effect of nonsteroidal anti-inflammatory drug use on the incidence of erectile dysfunction. J Urol. 2006;175(5):1812–6.

  191. 191.

    Gleason JM, Slezak JM, Jung H, Reynolds K, Van Den Eeden SK, Haque R, et al. Regular nonsteroidal anti-inflammatory drug use and erectile dysfunction. J Urol. 2011;185(4):1388–93.

  192. 192.

    Rainsford KD. Anti-inflammatory drugs in the 21st century. Subcell Biochem. 2007;42:3–27.

  193. 193.

    Senbel A, El Din NN, Norel X, El Din MM. On the potential effects of prostaglandin modulators and nonsteroidal antinflammoatory drugs on erectile process, an in vitro study in rabbit corpus cavernosum. Maturitas. 2015;81(1):209.

  194. 194.

    Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C. Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults. J Am Coll Cardiol. 2004;44(1):152–8.

  195. 195.

    Urpi-Sarda M, Casas R, Chiva-Blanch G, Romero-Mamani ES, Valderas-Martínez P, Arranz S, et al. Virgin olive oil and nuts as key foods of the Mediterranean diet effects on inflammatory biomarkers related to atherosclerosis. Pharmacol Res. 2012;65(6):577–83.

  196. 196.

    Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004;292(12):1440–6.

  197. 197.

    Esposito K, Ciotola M, Giugliano F, Schisano B, Autorino R, Iuliano S, et al. Mediterranean diet improves sexual function in women with the metabolic syndrome. Int J Impot Res. 2007;19(5):486–91.

  198. 198.

    Maiorino MI, Bellastella G, Caputo M, Castaldo F, Improta MR, Giugliano D, et al. Effects of Mediterranean diet on sexual function in people with newly diagnosed type 2 diabetes: The MÈDITA trial. J Diabetes Complicat. 2016;30(8):1519–24.

  199. 199.

    Giugliano F, Maiorino MI, Di Palo C, Autorino R, De Sio M, Giugliano D, et al. Original research—women's sexual health: Adherence to Mediterranean Diet and Sexual Function in Women with Type 2 Diabetes. J Sex Med. 2010;7(5):1883–90.

  200. 200.

    •• Maiorino MI, Bellastella G, Chiodini P, Romano O, Scappaticcio L, Giugliano D, et al. Primary prevention of sexual dysfunction with Mediterranean diet in Type 2 Diabetes: The MÈDITA Randomized Trial. Diabetes Care. 2016;39(9):e143–e4 This article describes a successful clinical trial of anti-inflammatory diets to improve sexual function in diabetic men and women.

  201. 201.

    González OA, Tobia C, Ebersole JL, Novak MJ. Caloric restriction and chronic inflammatory diseases. Oral Dis. 2012;18(1):16–31.

  202. 202.

    Aversa A, Bruzziches R, Francomano D, Greco EA, Violi F, Lenzi A, et al. Weight loss by multidisciplinary intervention improves endothelial and sexual function in obese fertile women. J Sex Med. 2013;10(4):1024–33.

  203. 203.

    Jackson G, Rosen RC, Kloner RA, Kostis JB. REPORT: The Second Princeton Consensus on sexual dysfunction and cardiac risk: new guidelines for sexual medicine. J Sex Med. 2006;3(1):28–36.

  204. 204.

    Gandaglia G, Briganti A, Jackson G, Kloner RA, Montorsi F, Montorsi P, et al. A systematic review of the association between erectile dysfunction and cardiovascular disease. Eur Urol. 2014;65(5):968–78.

  205. 205.

    Vlachopoulos C, Rokkas K, Ioakeimidis N, Stefanadis C. Inflammation, metabolic syndrome, erectile dysfunction, and coronary artery disease: common links. Eur Urol. 2007;52(6):1590–600.

  206. 206.

    • Maseroli E, Fanni E, Cipriani S, Scavello I, Pampaloni F, Battaglia C, et al. Cardiometabolic risk and female sexuality: focus on clitoral vascular resistance. J Sex Med. 2016;13(11):1651–61 This article outlines the possible role of inflammation in reducing clitoral blood flow and subsequently impairing female sexual arousal function.

Download references


This review was prepared with support from UNL Department of Psychology, the Nebraska Tobacco Settlement Biomedical Research Development Fund, and the UNL Office of Research and Economic Development. Particular thanks to Anneliis Sartin-Tarm, who designed the visual summary.

Author information

Correspondence to Tierney K. Lorenz.

Ethics declarations

Conflict of Interest

Tierney Lorenz declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Female Sexual Dysfunction and Disorders

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorenz, T.K. Interactions Between Inflammation and Female Sexual Desire and Arousal Function. Curr Sex Health Rep 11, 287–299 (2019). https://doi.org/10.1007/s11930-019-00218-7

Download citation


  • Inflammation
  • Sexual desire
  • Sexual arousal
  • C-reactive protein
  • Cytokines
  • Interleukin-6