Skip to main content

Advertisement

Log in

Neuromodulatory therapy with applications for the radical pelvic surgery patient

  • Published:
Current Sexual Health Reports Aims and scope Submit manuscript

Abstract

Erectile dysfunction as a complication of several commonly performed major pelvic surgeries is well recognized yet ineffectively averted at the present time. It is likely that the disorder relates commonly to a neuropathic process, even among men receiving maximally preserving cavernous nervesparing adjunctive procedures. Great interest exists at this time in developing effective therapies directed toward the neuropathic changes associated with pelvic surgeries, with the intent of restoring erectile function as fully and early as possible. Neuromodulation encompasses neuroprotective and neurotrophic interventions that may offer therapeutic approaches to preserve the functional integrity of the penile nerve supply with pelvic surgery. Although the therapeutic area is in its relative infancy, exciting findings thus far, mostly at preclinical levels, have provided a meaningful foundation for major clinical advances in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Nehra A, Moreland RB: Neurologic erectile dysfunction. Urol Clin North Am 2001, 28:289–308.

    Article  CAS  PubMed  Google Scholar 

  2. Burnett AL, Wesselmann U: History of the neurobiology of the pelvis. Urology 1999, 53:1082–1089.

    Article  CAS  PubMed  Google Scholar 

  3. Walsh PC: Anatomic radical retropubic prostatectomy. In Campbell’s Urology, edn 8. Edited by Walsh PC. Philadelphia: WB Saunders; 2002:3107–3129.

    Google Scholar 

  4. Klotz L, Herschorn S: Early experience with intraoperative cavernous nerve stimulation with penile tumescence monitoring to improve nerve sparing during radical prostatectomy. Urology 1998, 52:537–542.

    Article  CAS  PubMed  Google Scholar 

  5. Ong AM, Su LM, Varkarakis I, et al.: Nerve sparing radical prostatectomy: effects of hemostatic energy sources on the recovery of cavernous nerve function in a canine model. J Urol 2004, 172:1318–1322.

    Article  PubMed  Google Scholar 

  6. Kim ED, Scardino PT, Hampel O, et al.: Interposition of sural nerve restores function of cavernous nerves resected during radical prostatectomy. J Urol 1999, 161:188–192.

    Article  CAS  PubMed  Google Scholar 

  7. Kim ED, Nath R, Slawin KM, et al.: Bilateral nerve grafting during radical retropubic prostatectomy: extended followup. Urology 2001, 58:983–987.

    Article  CAS  PubMed  Google Scholar 

  8. Chang DW, Wood CG, Kroll SS, et al.: Cavernous nerve reconstruction to preserve erectile function following non-nerve-sparing radical retropubic prostatectomy: a prospective study. Plast Reconstr Surg 2003, 111:1174–1181.

    Article  PubMed  Google Scholar 

  9. Walsh PC, Marschke P, Ricker D, Burnett AL: Patient-reported urinary continence and sexual function after anatomic radical prostatectomy. Urology 2000, 55:58–61.

    Article  CAS  PubMed  Google Scholar 

  10. Rabbani F, Stapleton AM, Kattan MW, et al.: Factors predicting recovery of erections after radical prostatectomy. J Urol 2000, 164:1929–1934.

    Article  CAS  PubMed  Google Scholar 

  11. User HM, Hairston JH, Zelner DJ, et al.: Penile weight and cell subtype specific changes in a post-radical prostatectomy model of erectile dysfunction. J Urol 2003, 169:1175–1179.

    Article  PubMed  Google Scholar 

  12. Mulhall JP, Slovick R, Hotaling J, et al.: Erectile dysfunction after radical prostatectomy: hemodynamic profiles and their correlation with the recovery of erectile function. J Urol 2002, 467:1371–1375.

    Google Scholar 

  13. Gontero P, Fontana F, Bagnasacco A, et al.: Is there an optimal time for intracavernous prostaglandin E1 rehabilitation following nonnerve sparing radical prostatectomy? Results from a hemodynamic prospective study. J Urol 2003, 169:2166–2169.

    Article  PubMed  Google Scholar 

  14. Semkova I, Krieglstein J: Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res Brain Res Rev 1999, 30:176–188.

    Article  CAS  PubMed  Google Scholar 

  15. Frostick SP, Yin Q, Kemp GJ: Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998, 18:397–405. This article provides a useful, basic review of neurotrophic factors and molecular mechanisms involved in peripheral nerve regeneration.

    Article  CAS  PubMed  Google Scholar 

  16. Cosgaya JM, Chan JR, Shooter EM: The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 2002, 298:1245–1248.

    Article  CAS  PubMed  Google Scholar 

  17. Snider WD, Zhou FQ, Zhong J, Markus A: Signaling the pathway to regeneration. Neuron 2002, 35:13–16.

    Article  CAS  PubMed  Google Scholar 

  18. Apfel SC, Kessler JA: Neurotrophic factors in the treatment of peripheral neuropathy. Ciba Found Symp 1996, 196:98–108.

    CAS  PubMed  Google Scholar 

  19. Apfel SC: Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 2002, 50:393–413.

    Article  CAS  PubMed  Google Scholar 

  20. Apfel SC: Neurotrophic factor therapy—prospects and problems. Clin Chem Lab Med 2001, 39:351–355.

    Article  CAS  PubMed  Google Scholar 

  21. Evans GR: Peripheral nerve injury: a review and approach to tissue engineered constructs. Anat Rec 2001, 263:396–404. This review article describes and emphasizes the importance of four components of a successful nerve conduit for nerve regeneration after peripheral nerve injury, including a scaffold for axonal proliferation, support cells such as Schwann cells, growth factors, and extracellular matrix molecules.

    Article  CAS  PubMed  Google Scholar 

  22. Cestaro B: Effects of arginine, S-adenosylmethionine and polyamines on nerve regeneration. Acta Neurol Scand Suppl 1994, 154:32–41.

    Article  CAS  PubMed  Google Scholar 

  23. Burgers JK, Nelson RJ, Quinlan DM, Walsh PC: Nerve growth factor, nerve grafts and amniotic membrane grafts restore erectile function in rats. J Urol 1991, 146:463–468.

    CAS  PubMed  Google Scholar 

  24. Ball RA, Lipton SA, Dreyer EB, et al.: Entubulization repair of severed cavernous nerves in the rat resulting in return of erectile function. J Urol 1992, 148:211–215.

    CAS  PubMed  Google Scholar 

  25. Te AE, Santarosa RP, Koo HP, et al.: Neurotrophic factors in the rat penis. J Urol 1994, 152:2167–2172.

    CAS  PubMed  Google Scholar 

  26. Dahiya R, Chui R, Perinchery G, et al.: Differential gene expression of growth factors in young and old rat penile tissues is associated with erectile dysfunction. Int J Impot Res 1999, 11:201–206.

    Article  CAS  PubMed  Google Scholar 

  27. Bakircioglu ME, Lin CS, Fan P, et al.: The effect of adenoassociated virus mediated brain derived neurotrophic factor in an animal model of neurogenic impotence. J Urol 2001, 165:2103–2109.

    Article  CAS  PubMed  Google Scholar 

  28. Lee MC, El-Sakka AI, Graziottin TM, et al.: The effect of vascular endothelial growth factor on a rat model of traumatic arteriogenic erectile dysfunction. J Urol 2002, 167:761–767.

    Article  CAS  PubMed  Google Scholar 

  29. Bochinski D, Hsieh PD, Nunes L, et al.: Effect of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 complex in cavernous nerve cryoablation. Int J Impot Res 2004, 16:418–423.

    Article  CAS  PubMed  Google Scholar 

  30. Lin G, Chen KC, Hsieh PS, et al.: Neurotrophic effects of vascular endothelial growth factor and neurotrophins on cultured major pelvic ganglia. BJU Int 2003, 92:631–635.

    Article  CAS  PubMed  Google Scholar 

  31. Steiner JP, Hamilton GS, Ross DT, et al.: Neurotrophic immunophilin ligands stimulate structural and functional recovery in neurodegenerative animal models. Proc Natl Acad Sci U S A 1997, 94:2019–2024.

    Article  CAS  PubMed  Google Scholar 

  32. Sezen SF, Hoke A, Burnett AL, Snyder SH: Immunophilin ligand FK506 is neuroprotective for penile innervation. Nat Med 2001, 7:1073–1074.

    Article  CAS  PubMed  Google Scholar 

  33. Burnett AL, Becker RE: Immunophilin ligands promote penile neurogenesis and erection recovery after cavernous nerve injury. J Urol 2004, 171:495–500.

    Article  CAS  PubMed  Google Scholar 

  34. Sezen SF, Blackshaw S, Steiner JP, Burnett AL: FK506 binding protein 12 is expressed in rat penile innervation and upregulated after cavernous nerve injury. Int J Impot Res 2002, 14:506–512.

    Article  CAS  PubMed  Google Scholar 

  35. Burnett AL, Kramer MF, Dalrymple S, et al.: Non-immunosuppressant immunophilin ligand GPI-1046 does not promote in vitro growth of prostate cancer cells. Urology 2005, 65:1003–1007.

    Article  PubMed  Google Scholar 

  36. Yu SW, Wang H, Dawson TM, Dawson VL: Poly (ADP-ribose) polymerase-1 and apoptosis inducing factor in neurotoxicity. Neurobiol Dis 2003, 14:303–317.

    Article  CAS  PubMed  Google Scholar 

  37. Kendirci M, Gur S, Bivalacqua TJ, et al.: PARP inhibition restores in vivo erectile function in bilateral cavernous nerve injured rats [abstract]. J Sex Med 2004, 1:107.

    Google Scholar 

  38. Jung GW, Spencer EM, Lue TF: Growth hormone enhances regeneration of nitric oxide synthase-containing penile nerves after cavernous nerve neurotomy in rats. J Urol 1998, 160:1899–1904.

    Article  CAS  PubMed  Google Scholar 

  39. Laurikainen A, Hiltunen JO, Thomas-Crusells J, et al.: Neurturin is a neurotrophic factor for penile parasympathetic neurons in adult rat. J Neurobiol 2000, 43:198–205.

    Article  CAS  PubMed  Google Scholar 

  40. Podlasek CA, Zelner DJ, Harris JD, et al.: Altered sonic hedgehog signaling is associated with morphological abnormalities in the penis of the BB/WOR diabetic rat. Biol Reprod 2003, 69:816–827.

    Article  CAS  PubMed  Google Scholar 

  41. Quinlan DM, Nelson RJ, Walsh PC: Cavernous nerve grafts restore erectile function in denervated rats. J Urol 1991, 145:378–379.

    Google Scholar 

  42. Ball RA, Richie JP, Vickers MA Jr: Microsurgical nerve graft repair of the ablated cavernosal nerves in the rat. J Surg Res 1992, 53:280–286.

    Article  CAS  PubMed  Google Scholar 

  43. May F, Weidner N, Matiasek K, et al.: Schwann cell seeded guidance tubes restore erectile function after ablation of cavernous nerves in rats. J Urol 2004, 172:374–377.

    Article  CAS  PubMed  Google Scholar 

  44. Walsh PC: Nerve grafts are rarely necessary and are unlikely to improve sexual function in men undergoing anatomic radical prostatectomy. Urology 2001, 57:1020–1024.

    Article  CAS  PubMed  Google Scholar 

  45. Scardino PT, Kim ED: Rationale for and results of nerve grafting during radical prostatectomy. Urology 2001, 57:1016–1019.

    Article  CAS  PubMed  Google Scholar 

  46. Graziottin TM, Resplande J, Nunes L, et al.: Long-term survival of autotransplanted major pelvic ganglion in the corpus cavernosum of adult rats. J Urol 2002, 168:362–366.

    Article  PubMed  Google Scholar 

  47. Bochinski D, Lin GT, Nunes L, et al.: The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int 2004, 94:904–909.

    Article  PubMed  Google Scholar 

  48. Kim YT, Kwon DD, Pruchnic R, et al.: Injection of skeletal muscle-derived cells into the penis improves erectile function in a rat model of erectile dysfunction [abstract 1414]. J Urol 2004, 171:372.

    Article  Google Scholar 

  49. Stief CG, Weller E, Noack T, et al.: Functional electromyostimulation of the corpus cavernosum penis—preliminary results of a novel therapeutic option for erectile dysfunction. World J Urol 1995, 13:243–247.

    CAS  PubMed  Google Scholar 

  50. Magee TR, Ferrini M, Garban HJ, et al.: Gene therapy of erectile dysfunction in the rat with penile neuronal nitric oxide synthase. Biol Reprod 2002, 67:1033–1041.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnett, A.L. Neuromodulatory therapy with applications for the radical pelvic surgery patient. Current Sexual Health Reports 2, 69–73 (2005). https://doi.org/10.1007/s11930-005-0007-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11930-005-0007-x

Keywords

Navigation