Skip to main content

Advertisement

Log in

Cytokines and the immunopathology of the spondyloarthropathies

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

In contrast to rheumatoid arthritis (RA), the triggering antigens are known in reactive arthritis (ReA) and Lyme arthritis. Thus, in these arthritides the antigen-specific T-cell response can be investigated in much detail and lessons possibly learned for other spondyloarthropathies (SpA) such as ankylosing spondylitis (AS) where T cells may well also play an important role in the pathogenesis. This article focusses on the immunopathology of the SpA, ReA, and AS with special reference to T cells and cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Sieper J, Braun J: Pathogenesis of spondylarthropathies. Persistent bacterial antigen, autoimmunity, or both? Arthritis Rheum 1995, 38:1547–1554.

    Article  PubMed  CAS  Google Scholar 

  2. Braun J, Laitko S, Treharne J, et al.: Chlamydia pneumoniae—a new causative agent of reactive arthritis and undifferentiated oligoarthritis. Ann Rheum Dis 1994, 53:100–105.

    PubMed  CAS  Google Scholar 

  3. Wilkinson NZ, Kingsley GH, Sieper J, et al.: The detection of Chlamydia trachomatis but not Chlamydia pneumoniae in the synovium of patients with a range of rheumatic diseases. Arthritis Rheum 1998, 41:845–854. Important paper linking the absence of bacterial DNA with an efficient immune response.

    Article  PubMed  CAS  Google Scholar 

  4. Bas S, Griffais R, Kvien TK, et al.: Amplification of plasmid and chromosome Chlamydia DNA in synovial fluid of patients with reactive arthritis and undifferentiated seronegative oligoarthropathies. Arthritis Rheum 1995, 38:1005–113.

    Article  PubMed  CAS  Google Scholar 

  5. Braun J, Tuszewski M, Eggens U, et al.: Nested PCR strategy simultaneously targeting DNA sequences of multiple bacterial species in inflammatory joint diseases. I. Screening of synovial fluid samples of patients with spondyloarthropathies and other arthritides. J Rheumatol 1997, 24:1092–1100.

    PubMed  CAS  Google Scholar 

  6. Fendler C, Braun J, Eggens U, et al.: Bacteria-specific lymphocyte proliferation in peripheral blood in reactive arthritis and related disease. Brit J Rheumatol. 1998, 37:520–524. This study shows that the best chances of detecting a specific lymphocyte proliferation are in the first 4 weeks after the onset of arthritis.

    Article  CAS  Google Scholar 

  7. Sieper J, Braun J, Wu P, Kingsley G: T cells are responsible for the enhanced synovial cellular immune response to triggering antigen in reactive arthritis. Clin Exp Immunol 1993, 91:96–102.

    Article  PubMed  CAS  Google Scholar 

  8. Fendler C, Wu P, Eggens U, et al.: Longitudinal investigation of bacterium-specific synovial lymphocyte proliferation in reactive arthritis and Lyme arthritis. Brit J Rheumatol 1997, 37:784–788. Interesting report on repeated synovial lymphocyte proliferation to ReA-associated microbes suggesting that the antigen-specific response to Chlamydia, Shigella and Borrelia is quite consistent over time while the response to Yersinia mis less specific.

    Article  Google Scholar 

  9. Braun J, Grolms M, Distler A, Sieper J: The specific antibacterial proliferation of reactive arthritis synovial T cells is not due to their higher proportion of CD45RO+ cells compared to peripheral blood. J Rheumatol 1994, 21:1702–1707.

    PubMed  CAS  Google Scholar 

  10. Duchmann R, May E, Ackermann B, et al.: HLA-B27-restricted cytotoxic T lymphocyte responses to arthritogenic enterobacteria or self-antigens are dominated by closely related TCRBV gene segments. A study in patients with reactive arthritis. Scand J Immunol 1996, 43:101–108.

    Article  PubMed  CAS  Google Scholar 

  11. Allen RL, Gillespie JMA, Hall F, et al.: Multiple T cell expansion are found in the blood and synovial fluzid of patients with reactive arthritis. J Rheumatol 1997, 24:1750–1757.

    PubMed  CAS  Google Scholar 

  12. Braun J, Grolms M, Sieper J: Three-colour flowcytometric examination of CD4/CD45 subsets reveals no differences in peripheral blood and synovial fluid between patients with reactive arthritis and rheumatoid arthritis. Clin Exp Rheumatol 1994, 12:17–22.

    PubMed  CAS  Google Scholar 

  13. Probst P, Hermann E, Meyer zum Buschenfelde KH, Fleischer B:Identification of the Yersinia enterocolitica urease beta subunit as a target antigen for human synovial T lymphocytes in reactive arthritis. Infect Immun 1993, 61:4507–4509.

    PubMed  CAS  Google Scholar 

  14. Mertz AK, Daser A, Skurnik M, et al.: The evolutionarily conserved ribosomal protein L23 and the cationic urease beta-subunit of Yersinia enterocolitica O:3 belong to the immunodominant antigens in Yersinia-triggered reactive arthritis: implications for autoimmunity. Mol Med 1994, 1:44–55.

    PubMed  CAS  Google Scholar 

  15. Mertz AKH, Ugrinovic S, Lauster R, et al.: Characterization of the synovial T cell response to various recombinant Yersinia antigens in Yersinia-triggered reactive arthritis: the hsp60 drives a major immune response. Arthritis Rheum 1998, 41:315–326. The 60 kD heat shock protein of Yersinia seems to play an important role in the pathogenesis of Yersinia-triggered reactive arthritis.

    Article  PubMed  CAS  Google Scholar 

  16. Gaston JS, Deane KH, Jecock RM, Pearce JH: Identification of 2 Chlamydia trachomatis antigens recognized by synovial fluid T cells from patients with Chlamydia induced reactive arthritis. J Rheumatol 1996, 23:130–136.

    PubMed  CAS  Google Scholar 

  17. Deane KH, Jecock RM, Pearce JH, Gaston JS: Identification and characterization of a DR4-restricted T cell epitope within chlamydia heat shock protein 60. Clin Exp Immunol 1997, 109:439–445.

    Article  PubMed  CAS  Google Scholar 

  18. Benjamin RJ, Parham P: Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990, 11:137–142.

    Article  PubMed  CAS  Google Scholar 

  19. Hermann E, Yu DT, Meyer zum BuschenfeldeKH, Fleischer B:HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 1993, 342:646–650.

    Article  PubMed  CAS  Google Scholar 

  20. Ugrinovic S, Mertz A, Wu P, et al.: A single nonamer from the Yersinia 60kd heat shock protein is the target of HLA-B27 restricted CTL response in Yersinia-induced reactive arthritis. J Immunol 1997, 159:5715–5723.

    PubMed  CAS  Google Scholar 

  21. Abbas AK, Murphy KM, Sher A: Functional diversity of helper T lymphocytes. Nature 1996, 383:787–793.

    Article  PubMed  CAS  Google Scholar 

  22. Schlaak J, Hermann E, Ringhoffer M, et al.: Predominance of Th1-type T cells in synovial fluid of patients with Yersiniainduced reactive arthritis. Eur J Immunol 1992, 22:2771–2776.

    Article  PubMed  CAS  Google Scholar 

  23. Simon AK, Seipelt E, Wu P, et al.: Analysis of cytokine profiles in synovial T cell clones from chlamydial reactive arthritis patients: predominance of the Th1 subset. Clin Exp Immunol 1993, 94:122–126.

    Article  PubMed  CAS  Google Scholar 

  24. Simon AK, Seipelt E, Sieper J: Divergent T-cell cytokine patterns in inflammatory arthritis. Proc Natl Acad Sci U S A 1994, 91:8562–8566.

    Article  PubMed  CAS  Google Scholar 

  25. Yin Z, Braun J, Neure L, et al.: Crucial role of interleukin-10/ inter-leukin-12 balance in the regulation of the type 2 T helper cytokine response in reactive arthritis. Arthritis Rheum 1997, 40:1788–1797.

    Article  PubMed  CAS  Google Scholar 

  26. Yin Z, Braun J, Neure L, et al.: T cell cytokine pattern in the joints of patients with Lyme arthritis and its regulation by cytokines and anticytokines. Arthritis Rheum 1997, 40:69–79.

    Article  PubMed  CAS  Google Scholar 

  27. Tak PP, Smeets TJM, Dolhain RJEM, et al.: Analysis of the synovial infiltrate and expression of cytokines in rheumatoid arthritis compared with Yersinia-induced arthritis patients in relation to disease duration. Arthritis Rheum 1997, 40:S252.

    Article  Google Scholar 

  28. Thurkow EW, van der Heijden IM, Breedveld FC, et al.:Increased expression of IL-15 in the synovium of patients with rheumatoid arthritis compared with patients with Yersinia-induced arthritis and osteoarthritis. J Pathol 1997, 181:444–450.

    Article  PubMed  CAS  Google Scholar 

  29. Shigeru K, Schumacher HR, Yarboro CH, et al.: In vivo gene expression of type 1 and type 2 cytokines in synovial tissues from patients in early stages of rheumatoid, reactive, and undifferentiated arthritis. Proc Assoc Am Phys 1997, 109:286–302.

    Google Scholar 

  30. Murray KJ, Grom AA, Thompson SD, et al.: Contrasting cytokine profiles in the synovium of different forms of juvenile rheumatoid arthritis and juvenile spondyloarthropathy: prominence of interleukin-4 in restricted disease. J Rheumatol 1998, 25:1388–1398. This study suggests that the presence of IL-4 in the synovium is correlated with a better outcome of juvenile chronic arthritis.

    PubMed  CAS  Google Scholar 

  31. Steiner G, Studnicka-Benke A, Witzmann G, et al.: Soluble receptors for tumor necrosis factor and interleukin-2 in serum and synovial fluid of patients with rheumatoid arthritis, reactive arthritis and osteoarthritis. J Rheumatol 1995, 22:406–412.

    PubMed  CAS  Google Scholar 

  32. Schlaak JF, Pfers I, Meyer Zum BuschenfeldeKH, Marker Hermann E: Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol 1996, 14:155–162.

    PubMed  CAS  Google Scholar 

  33. Yin Z, Neure L, Grolms M, et al.: Th1/Th2 cytokine pattern in the joint of rheumatoid arthritis and reactive arthritis patients: analysis at the single cell level. Arthritis Rheum 1997, 40:S37.

    Google Scholar 

  34. Picker LJ, Singh MK, Zdraveski Z, et al.: Direct demonstration of cytokine synthesis heterogeneity among human memory/ effector T cells by flow cytometry. Blood 1995, 86:1408–1412.

    PubMed  CAS  Google Scholar 

  35. van Roon JA, van Eden W, van Roy JL, et al.: Stimulation of suppressive T cell responses by human but not bacterial 60-kD heat-shock protein in synovial fluid of patients with rheumatoid arthritis. J Clin Invest 1997, 100:459–463.

    PubMed  Google Scholar 

  36. Yi Y, Yang X, Brunham RC: Autoimmunity to heat shock protein 60 and antigen-specific production of interleukin-10. Infect Immun 1997, 65:1669–1674.

    PubMed  CAS  Google Scholar 

  37. Holland MJ, Bailey RL, Conway DJ, et al.: T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clin Exp Immunol 1996, 105:429–435.

    Article  PubMed  CAS  Google Scholar 

  38. Rodel J, Straube E, Lungershausen W, et al.: Secretion of cytokines by human synoviocytes during in vitro infection with Chlamydia trachomatis. J Rheumatol 1998, 25:2161–2168. Fibroblast-like synovial cells support chlamydial growth in vitro. Chlamydia stimulate synoviocytes to produce IL-6 and TGF-beta.

    PubMed  CAS  Google Scholar 

  39. Williams DM, Grubbs BG, Darville T, et al.: A role for interleukin-6 in host defense against murine Chlamydia trachomatis infection. Infect Immun 1998, 66:4564–4567.

    PubMed  CAS  Google Scholar 

  40. Perry LL, Feilzer K, Caldwell HD: Neither interleukin-6 nor inducible nitric oxide synthase is required for clearance of Chlamydia trachomatis from the murine genital tract epithelium. Infect Immun 1998, 66:1265–1269.

    PubMed  CAS  Google Scholar 

  41. Yang X, Gartner J, Zhu L, et al.: IL-10 gene knockout mice show enhanced Th1-like protective immunity and absent granuloma formation following Chlamydia trachomatis lung infection. J Immunol 1999, 162:1010–1017.

    PubMed  CAS  Google Scholar 

  42. Lampe MF, Wilson CB, Bevan MJ, Starnbach MN: Gamma interferon production by cytotoxic T lymphocytes is required for resolution of Chlamydia trachomatis infection. Infect Immun 1998, 66:5457–5461. This paper shows that the IFNg production of cytotoxic CD8+ T cells is essential to fight chlamydial infections in an animal model.

    PubMed  CAS  Google Scholar 

  43. Prakken AB, van Hoeij MJ, Kuis W, et al.: T-cell reactivity to human HSP60 in oligo-articular juvenile chronic arthritis is associated with a favorable prognosis and the generation of regulatory cytokines in the inflamed joint. Immunol Lett 1997, 57:139–142.

    Article  PubMed  CAS  Google Scholar 

  44. Granfors K, Merilahti-Palo R, Luukainen R, et al.: Persistence of Yersinia antigens in peripheral blood cells from patients with Yersinia entrocolitica 0:3 infection with or without reactive arthritis. Arthritis Rheum 1998, 41:855–862. Fascinating study showing that Yersinia can persist in peripheral blood cells for years and that yersinia heat shock protein is expressed in synovial cells.

    Article  PubMed  CAS  Google Scholar 

  45. Clerici M, Shearer GM: A TH1-TH2 switch is the critical step in the etiology of HIV infection. Immunol Today 1993, 14:107–111.

    Article  PubMed  CAS  Google Scholar 

  46. Bentvich Z, Kalinkovich A, Weisman Z: Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today 1995, 16:187–191.

    Article  Google Scholar 

  47. Njobvu PD, McGill PE, Jellis JE, Pobee JOM: Rheumatic disorders at a Zambian teaching hospital. Brit J Rheumatol 1996, 36:404–405.

    Article  Google Scholar 

  48. Braun J, Yin Z, Krause A, et al.: Peripheral blood cells of reactive arthritis patients secrete more IL-10 and less TNF-alpha than patients with Lyme-or rheumatoid arthritis. Arthritis Rheum 1997, 40:S79.

    Google Scholar 

  49. Siegert S, Yin Z, Grolms M, et al.: Evidence for differences in cytokine secretion by peripheral blood cells of HLA B27-positive vs -negative healthy subjects. Clin Exp Rheumatol 1998, 16:215.

    Google Scholar 

  50. Claudepierre P, Rymer JC, Chevalier X: IL-10 plasma levels correlate with disease activity in spondyloarthropathy. J Rheumatol 1997, 24:1659–1661.

    PubMed  CAS  Google Scholar 

  51. Gratacos J, Collado A, Filella X, et al.: Serum cytokines (IL-6, TNF-alpha, IL-1 beta and IFN-gamma) in ankylosing spondylitis: a close correlation between serum IL-6 and disease activity and severity. Br J Rheumatol 1994, 33:927–931.

    Article  PubMed  CAS  Google Scholar 

  52. Falkenbach A, Herold M: In ankylosing spondylitis serum interleukin-6 correlates with the degree of mobility restriction, but not with short term changes in the variables of mobility. Rheumatol Int 1998, 18:103–106.

    Article  PubMed  CAS  Google Scholar 

  53. Leino R, Vuento R, Koskimies S, et al.: Depressed lymphocyte transformation by yersinia and E.coli in yersinia arthritis. Ann Rheum Dis 1983, 42:176–181.

    PubMed  CAS  Google Scholar 

  54. Vuento R, Leino R, Viander M, Toivanen A: In vitro lymphoproliferative response to Yersinia: depressed response in arthritic patients years after Yersinia infection. Clin Exp Rheumatol 1983, 1:219–224.

    PubMed  CAS  Google Scholar 

  55. Hermann E, Grabe H, Mayet W-J, et al.: Lower frequency of Yersinia-reactive peripheral blood T cells in acute Yersinia-induced arthritis—indication of a defective first line of defense? Clin Rheumatol 1992, 11:158.

    Google Scholar 

  56. Groux H, O’Garra A, Bigler M, et al.: CD4+ T cell subset inhibits antigen-specific T cell responses and prevents colitis. Nature 1997, 389:737–742.

    Article  PubMed  CAS  Google Scholar 

  57. Brewerton D, Hart F, Nicholls A, et al.: Ankylosing spondylitis and HLA27. Lancet 1973, 1:904–907.

    Article  PubMed  CAS  Google Scholar 

  58. Nikbin B, Brewerton DA, James DCO, et al.: Diminished mixed lymphocyte reaction in ankylosing spondylitis, relatives, and normal individuals, all with HLA B27. Ann Rheum Dis 1976, 35:37–39.

    PubMed  CAS  Google Scholar 

  59. Brenner MB, Kobayashi S, Wiesenhutter CW, et al.: In vitro T lymphocyte proliferative response to Yersinia enterocolitica in Reiter’s syndrome. Lack of response in other HLA B27 positive individuals. Arthritis Rheum 1984, 27:250–257.

    Article  PubMed  CAS  Google Scholar 

  60. Inman RD, Chiu B, Johnston ME, et al.: HLA class I-related impairment in IL-2 production and lymphocyte response to microbial antigens in reactive arthritis. J Immunol 1989, 142:4256–4260.

    PubMed  CAS  Google Scholar 

  61. Toivanen P, Koskimies S, Granfors K, Eerola E: Bacterial antibodies in HLA-B27+ healthy individuals. Arthritis Rheum 1993, 36:1633–1635.

    Article  PubMed  CAS  Google Scholar 

  62. Hermann E, Sucke B, Droste U, Meyer zum Büschenfelde HK:Klebsiella pneumoniae-reactive T cells in blood and synovial fluid of patients with ankylosing spondylitis. Comparison with HLA B27+ healthy control subjects in a limiting dilution study and determination of the specificity of synovial fluid T cell clones. Arthritis Rheum 1995, 38:1277–1282.

    Article  PubMed  CAS  Google Scholar 

  63. Seitz M, Lemmel EM, Homfeld J, Kirchner H: Enhanced interferon-gamma production by lymphocytes induced by a mitogen from mycoplasma arthritidis in patients with ankylosing spondylitis. Rheumatol Int 1989, 9:85–90.

    Article  PubMed  CAS  Google Scholar 

  64. Brand JM, Neustock P, Kruse A, et al.: Stimulation of whole blood cultures in patients with ankylosing spondylitis by a mitogen derived from mykoplasma arthritidis and other mitogens. Rheumatol Int 1996, 16:207–211.

    Article  Google Scholar 

  65. ten Hagen TL, van Vianan W, Savelkoul HF, et al.: Involvement of T cells in enhanced resistance to Klebsiella pneumoniae septicemia in mice treated with liposome-encapsulated muramyl tripeptide phosphatidylethanolamine or gammainterferon. Infect Immun 1998, 66:1962–1967.

    PubMed  Google Scholar 

  66. Tiwana H, Walmsley RS, Wilson C, et al.: Characterization of the humoral immune response to Klebsiella species in inflammatory bowel disease and ankylosing spondylitis. Br J Rheumatol 1998, 37:525–531. Interesting paper linking the presence of anti-Klebsiella antibodies to gut permeability.

    Article  PubMed  CAS  Google Scholar 

  67. Maki-Ikola O, Nissila M, Lehtinen K, Granfors K: IgA class serum antibodies against three different Klebsiella serotypes in ankylosing spondylitis. Br J Rheumatol 1998, 37:1299–1302. A broad range of Klebsiella serotypes may be involved in the pathogenesis of AS.

    Article  PubMed  CAS  Google Scholar 

  68. Cancino-Diaz ME, Perez-Salazar JE, Dominguez-Lopez L, et al.:Antibody response to Klebsiella pneumoniae 60 kDa protein in familial and sporadic ankylosing spondylitis: role of HLAB27 and characterization as a GroEL-like protein. J Rheumatol 1998, 25:1756–1764. In this study, HLA-B27+ individuals, independent of their disease status, show a significant higher response to the 60 kDa protein of K. pneumoniae than HLA-B27 subjects.

    PubMed  CAS  Google Scholar 

  69. Ahmadi K, Wilson C, Tiwana H, et al.: Antibodies to Klebsiella pneumoniae lipopolysaccharide in patients with ankylosing spondylitis. Br J Rheumatol 1998, 37:1330–1333. AS patients had significantly elevated levels of IgG and IgA antibodies against K. pneumoniae LPS and IgA antibodies against E. coli LPS compared to healthy controls.

    Article  PubMed  CAS  Google Scholar 

  70. Walmsley RS, Anthony A, Sim R, et al.: Absence of Escherichia coli, Listeria monocytogenes, and Klebsiella pneumoniae antigens within inflammatory bowel disease tissues. J Clin Pathol 1998, 51:657–661. No bacterial DNA was found in gut biopsies of patients with Crohn’s disease despite elevated antibodies to Klebsiella.

    PubMed  CAS  Google Scholar 

  71. Tanchot C, Guillaume S, Delon J, et al.: Modifications of CD8+ T cell function during in vivo memory and tolerance induction. Immunity 1998, 8:581–590.

    Article  PubMed  CAS  Google Scholar 

  72. Brown MA, Pile KD, Kennedy G, et al.: A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum 1998, 41:588–595. Important study showing that only one third of the genetic risk to get AS is due to HLA B27.

    Article  PubMed  CAS  Google Scholar 

  73. van der Linden MW, Huizinga TW, Stoeken DJ, et al.:Determination of tumour necrosis factor-alpha and interleukin-10 production in a whole blood stimulation system: assessment of laboratory error and individual variation. J Immunol Methods 1998, 218:63–71.

    Article  PubMed  Google Scholar 

  74. Louis E, Franchimont D, Piron A, et al.: Tumour necrosis factor (TNF) gene polymorphism influences TNF-alpha production in lipopolysaccharide (LPS)-stimulated whole blood cell culture in healthy humans. Clin Exp Immunol 1998, 113:401–406.

    Article  PubMed  CAS  Google Scholar 

  75. Westendorp RG, Langermans JA, Huizinga TW, et al.: Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997, 349:170–173.

    Article  PubMed  CAS  Google Scholar 

  76. Cabrera M, Shaw MA, Sharples C, et al.: Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med 1993, 182:1259–1264.

    Article  Google Scholar 

  77. McGuire W, Hill AVS, Allsopp CEM, et al.: Variation in the TNF-a promoter region associated with cerebral malaria. Nature 1994, 371:508–511.

    Article  PubMed  CAS  Google Scholar 

  78. Bouma G, Crusius JB, Oudkerk Pool M, et al.: Secretion of tumour necrosis factor alpha and lymphotoxin alpha in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol 1996, 43:456–463.

    Article  PubMed  CAS  Google Scholar 

  79. Brown MA, Kennedy LG, Darke C, et al.: The effect of HLA DR genes on susceptibility and severity of ankylosing spondylitis. Arthritis Rheum 1998, 41:460–466.

    Article  PubMed  CAS  Google Scholar 

  80. Conway DJ, Holland MJ, Bailey RL, et al.: Scarring trachoma is associated with polymorphism in the tumor necrosis factor alpha (TNF-alpha) gene promoter and with elevated TNFalpha levels in tear fluid. Infect Immun 1997, 65:1003–1006.

    PubMed  CAS  Google Scholar 

  81. Wilson GA, de Vries N, Pociot F, et al.: An allelic polymorphism within the human tumour necrosis factor a promoter region is strongly associated with HLA A1, B8, and DR 3 alleles. J Exp Med 1993, 177:557–560.

    Article  PubMed  CAS  Google Scholar 

  82. Wilson AG, Symons JA, McDowell TL, et al.: Effects of a polymorphism in the human tumor necrosis factor a promoter on transcriptional activation. Proc Natl Acad Sci 1997, 94:3195–3199.

    Article  PubMed  CAS  Google Scholar 

  83. Kaijzel EL, Brinkman BM, van Krugten MV, et al.: Polymorphism within the tumor necrosis factor alpha (TNF) promoter region in patients with ankylosing spondylitis. Hum Immunol 1999, 60:140–144.

    Article  PubMed  CAS  Google Scholar 

  84. Verjans GM, Brinkman BM, van Dornik CE, et al.: Polymorphism of tumour necrosis factor-alpha at position -308 in relation to ankylosing spondylitis. Clin Exp Immunol 1994, 97:45–47.

    Article  PubMed  CAS  Google Scholar 

  85. Fraile A, Nieto A, Beraun Y, et al.: Tumor necrosis factor gene polymorphisms in ankylosing spondylitis. Tissue Antigens 1998, 51:386–390.

    Article  PubMed  CAS  Google Scholar 

  86. Hohler T, Schaper T, Schneider PM, et al.: Association of different tumor necrosis factor alpha promoter allele frequencies with ankylosing spondylitis in HLA-B27 positive individuals. Arthritis Rheum 1998, 41:1489–1492.

    Article  PubMed  CAS  Google Scholar 

  87. Tuokko J, Koskinen S, Westman P, et al.: Tumour necrosis factor microsatellites in reactive arthritis. Br J Rheumatol 1998, 37:1203–1206.

    Article  PubMed  CAS  Google Scholar 

  88. Yang X, HayGlass T, Brunham RC: Genetically determined differences in IL-10 and IFNg-responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J Immunol 1996, 156:4338–4344.

    PubMed  CAS  Google Scholar 

  89. Llorente L, Richaud Patin Y, Couderc J, et al.: Dysregulation of interleukin-10 production in relatives of patients with systemic lupus erythematosus. Arthritis Rheum 1997, 40:1429–1435.

    Article  PubMed  CAS  Google Scholar 

  90. Eskdale J, Wordsworth BP, Bowman S, et al.: Association between polymorphisms at the human IL-10 locus and systemic lupus erythematosus. Tissue Antigens 1997, 49:635–639.

    Article  PubMed  CAS  Google Scholar 

  91. Mok CC, Lanchbury JS, Chan DW, Lau CS: Interleukin10 promoter polymorphisms in southern chines patients with systemic lupus erythematosus. Arthritis Rheum 1998, 41:1090–1095.

    Article  PubMed  CAS  Google Scholar 

  92. Keijsers V, Verweij CL, Hazes M, et al.: Innate differences in IL-10 production are present at the level of transcription and associated with haplotypes: association of IL-10 haplotypes and rheumatoid arthritis. Clin Exp Rheumatol 1998, 16:200.

    Google Scholar 

  93. Braun J, Sieper J: The sacroiliac joint in the spondylarthropathies. Curr Opin Rheumatol 1996, 7:275–283.

    Article  Google Scholar 

  94. Leirisalo-Repo M, Helenius P, Hannu T, et al.: Longterm prognosis of reactive salmonella arthritis. Ann Rheum Dis 1997, 56:516–520.

    PubMed  CAS  Google Scholar 

  95. Brandt J, Bollow M, Häberle HJ, et al.: Not all patients with sacroiliitis have spondyloarthropathy—a clinical study of inflammatory back pain and arthritis of the lower limbs. Rheumatology 1999, in press.

  96. Braun J, Bollow M, Remlinger G, et al.: Prevalence of spondylarthropathies in HLA B27-positive and -negative blood donors. Arthritis Rheum 1998, 41:58–67. This study suggests that the prevalence of SpA is higher than previously thought. HLA B27-positivity increases the probability of sacroiliitis (proven by MRI) and SpA in individuals with inflammatory back pain.

    Article  PubMed  CAS  Google Scholar 

  97. Bollow M, Braun J, Kannenberg J, et al.: Normal morphology of sacroiliac joints in children: magnetic resonance studies related to age and sex. Skeletal Radiol 1997, 26:697–704.

    Article  PubMed  CAS  Google Scholar 

  98. Bollow M, Biedermann T, Kannenberg J, et al.: Use of dynamic magnetic resonance imaging to detect sacroiliitis in HLA B27-positive and -negative children with juvenile arthritides. J Rheumatol 1998, 25:556–564. Elegant study showing that MRI is useful to detect sacroiliitis in children.

    PubMed  CAS  Google Scholar 

  99. Braun J, Tuszewski M, Ehlers S, et al.: Nested PCR strategy simultaneously targeting DNA sequences of multiple bacterial species in inflammatory joint diseases. II. Examination of sacroiliac and knee joint biopsies of patients with spondyloarthropathies and other arthritides. J Rheumtol 1997, 24:1101–1105.

    CAS  Google Scholar 

  100. Braun J, Bollow M, Sieper J: Radiologic diagnosis and pathology of the spondyloarthropathies. Rheum Dis Clin North Am 1998, 24:697–735. Comprehensive review on SpA radiology and pathology.

    Article  PubMed  CAS  Google Scholar 

  101. Jobanputra P, Choy EH, Kingsley GH, et al.: Cellular immunity to cartilage proteoglycans: relevance to the pathogenesis of ankylosing spondylitis. Ann Rheum Dis 1992, 51:959–962.

    PubMed  CAS  Google Scholar 

  102. Leroux JY, Guerassimov A, Cartman A, et al.: Immunity to the G1 globular domain of the cartilage proteoglycan aggrecan can induce inflammatory erosive polyarthritis and spondylitis in BALB/c mice but immunity to G1 is inhibited by covalently bound keratan sulfate in vitro and in vivo. J Clin Invest 1996, 97:621–632.

    PubMed  CAS  Google Scholar 

  103. Guerassimov A, Zhang Y, Banerjee S, et al.: Autoimmunity to cartilage link protein in patients with rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 1998, 25:1480–1484. This study shows an enhanced proliferative response to link protein in AS patients.

    PubMed  CAS  Google Scholar 

  104. Poole AR: The histopathology of ankylosing spondylitis: are there unifying hypotheses? Am J Med Sci 1998, 316:228–233. Excellent review on histopathology and possible autoantigens in AS.

    Article  PubMed  CAS  Google Scholar 

  105. Francois RJ: Le rachis dans la spondylarthrite ankylosante. Brussels, Belgium: Editions Arscia, 1976.

    Google Scholar 

  106. Shichikawa K, Tsujimoto M, Nishioka J, et al.: Histopathology of early sacroiliitis and enthesitis in ankylosing spondylitis. In Advances in Inflammation Research, Vol 9: The Spondyloarthropathies. Edited by Ziff M, Cohen SB. New York, Raven Press; 1985.

    Google Scholar 

  107. Braun J, Bollow M, Neure L, et al.: Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum 1995, 38:499–505.

    Article  PubMed  CAS  Google Scholar 

  108. Braun J, Bollow M, Eggens U, et al.: Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondylarthropathy patients. Arthritis Rheum 1994, 37:1039–1045.

    Article  PubMed  CAS  Google Scholar 

  109. McGonagle D, Gibbon W, Emery P: Classification of inflammatory arthritis by enthesitis. Lancet 1998, 352:1137–1140. Interesting hypothesis based on newer and older data on the involvement of entheseal structures in SpA.

    Article  PubMed  CAS  Google Scholar 

  110. McGonagle D, Gibbon W, O’Connor P, et al.: Characteristic MRI entheseal changes of knee synovitis in spondyloarthropathy. Arthritis Rheum 1998, 41:694–700. Very interesting paper using MRI to show that knee arthritis in SpA and RA is anatomically different due to an enhanced frequency of enthesitis in SpA.

    Article  PubMed  CAS  Google Scholar 

  111. Ball J: Enthesopathy of rheumatoid and ankylosing spondylitis. Ann Rheum Dis 1971, 30:213–223.

    PubMed  CAS  Google Scholar 

  112. Dougados M, van der Linden S, Juhlin R, et al.: The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum 1991, 34:1218–1227.

    Article  PubMed  CAS  Google Scholar 

  113. Lehtinen A, Taavitsainen M, Leirisalo Repo M: Sonographic analysis of enthesopathy in the lower extremities of patients with spondylarthropathy. Clin Exp Rheumatol 1994, 12:143–148.

    PubMed  CAS  Google Scholar 

  114. Olivieri I, Barozzi L, Padula A: Enthesiopathy: clinical manifestations, imaging and treatment. Baillieres Clin Rheumatol 1998, 12:665–681. Comprehensive review on diagnosis and treatment of enthesitis in SpA.

    Article  PubMed  CAS  Google Scholar 

  115. Francois RF, Gardner DL, Bywaters EGL: The sacroiliac joint in ankylosing spondylitis. Rheumatology in Europe 1995, 24:87.

    Google Scholar 

  116. Braun J, Neure L, Francois R, et al.: Immunohistologic examinations of sacroiliac inflammation in ankylosing spondylitis. Arthritis Rheum 1998, 41:S112.

    Article  Google Scholar 

  117. Olivieri I, Barozzi L, Favaro L, et al.: Dactylitis in patients with seronegative spondylarthropathy. Assessment by ultrasonography and magnetic resonance imaging. Arthritis Rheum 1996, 39:1524–1528.

    Article  PubMed  CAS  Google Scholar 

  118. Zink A, Braun J, Listing A, Wollenhaupt J, and the German Colloborative Research Centers: The burden of illness in ankylosing spondylitis is comparable. Arthritis Rheum 1997, 40:S227.

    Google Scholar 

  119. Eulderink F: Pathology of ankylosing spondylitis. Spine, State of the Art Reviews 1990, 4:507–528.

    Google Scholar 

  120. De Vlam K, Mielants H, Veys EM: Involvement of the zygapophyseal joint in ankylosing spondylitis: relation to the bridging syndesmophyte. Arthritis Rheum 1998, 41:S113.

    Google Scholar 

  121. Bollow M, Brandt J, Häberle HJ, et al.: Use of magnetic resonance imaging to detect spinal inflammation in spondyloarthropathy. Arthritis Rheum 1998, 41:S358.

    Google Scholar 

  122. Eulderink F, Ivanyi P, Weinreich S: Histopathology of murine ankylosing enthesopathy. Pathol Res Pract 1998, 194:797–803.

    PubMed  CAS  Google Scholar 

  123. Weinreich SS, Hoebe-Hewryk B, van der Horst AR, et al.:The role of MHC class I heterodimer expression in mouse ankylosing enthesopathy. Immunogenetics 1997, 46:35–40.

    Article  PubMed  CAS  Google Scholar 

  124. Braun J, Bollow M, Seyrekbasan SF, et al.: Computed tomography corticosteroid injection of the sacroiliac joint in patients with spondylarthropathy with sacroiliitis: clinical outcome and followup by dynamic magnetic resonance imaging. J Rheumatol 1996,

  125. Braun J, Bollow M, Wu P, et al.: Further examination of sacroiliac biopsies from spondylarthropathy patients—investigation of the cytokine pattern and of bacterial DNA. Arthritis Rheum 1995, 38:S315.

    Article  Google Scholar 

  126. Bollow M, Fischer T, Reißhauer H, et al.: T cells and macrophages predominate in early and active sacroiliitis as detected by magnetic resonance imaging in spondyloarthropathies. Arthritis Rheum 1998, 41:S111.

    Google Scholar 

  127. Kidd BL, Moore K, Walters MT, et al.: Immunohistological features of synovitis in ankylosing spondylitis: a comparison with rheumatoid arthritis. Ann Rheum Dis 1989, 48:92–98.

    Article  PubMed  CAS  Google Scholar 

  128. Cunnane G, Bresnihan B, Fitzgerald O: Immunohistologic analysis of peripheral joint disease in ankylosing spondylitis. Arthritis Rheum 1998, 41:180–182. Important study on immunohistology of peripheral joints in AS showing that T cells and macrophages are involved.

    Article  PubMed  CAS  Google Scholar 

  129. Beacock-Sharp H, Young JL, Gaston JSH: Analysis of T cell subsets present in the peripheral blood and synovial fluid of reactive arthritis patients. Ann Rheum Dis 1998, 57:100–106. This study shows that the synovial CD4+ and CD8+ T cells are activated in ReA.

    PubMed  CAS  Google Scholar 

  130. Kirveskari J, Jalkanen S, Maki-Ikola O, Granfors K: Increased synovial endothelium binding and transendothelial migration of mononuclear cells during Salmonella infection. Arthritis Rheum 1998, 41(6):1054–1063. Interesting study showing that peripheral blood mononuclear cells show increased binding to synovial endothelial cells during Salmonella infections.

    Article  PubMed  CAS  Google Scholar 

  131. Nikkari S, Rantakokko K, Ekman P, et al.: Salmonella-triggered reactive arthritis: use of polymerase chain reaction, immunocytochemical staining, and gas chromatography-mass spectrometry in the detection of bacterial components from synovial fluid. Arthritis Rheum 1999, 42(1):84–89. Important study suggesting that only dead Salmonella are transported via the blood to the joint.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, J., Sieper, J. Cytokines and the immunopathology of the spondyloarthropathies. Curr Rheumatol Rep 1, 67–77 (1999). https://doi.org/10.1007/s11926-999-0028-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-999-0028-y

Keywords

Navigation