Skip to main content

Advertisement

Log in

New developments in the pathogenesis of articular cartilage calcification

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Articular cartilage, unlike growth plate cartilage, is specialized to not undergo matrix calcification. However, articular cartilage mineralization, in the form of CPPD (chondrocalcinosis) and hydroxyapatite crystals, frequently accompanies and complicates osteoarthritis and aging. Recent work has demonstrated that certain features of growth cartilage development and mineralization are shared in degenerative cartilage. These include chondrocyte proliferation, hypertrophy and increased apoptosis. Moreover, parathyroid hormone related protein (PTHrP), one of the central mediators of endochondral development, is abundant in osteoarthritic cartilage. Cartilage PPi elaboration and cytosolic transglutaminase activity are markedly increased with aging. Only recently have the molecular identities been defined for the chondrocyte inorganic pyrophosphate (PPi)-generating isozymes of the phosphodiesterase nucleotide pyrophosphatase (PDNP) family (including PC-1 and B10), and for transglutaminase in articular cartilage. This review focuses on the evolving understanding of the potential roles, in articular cartilage calcification, of PTHrP, PDNP family enzymes, PPi metabolism, and transglutaminase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chung UI, Lanske B, Lee K. et al.: The parathyroid hormone/ parathyroid hormone-related peptide receptor coordinates endochondral bone development by directly controlling chondrocyte differentiation. PNAS 1998, 95:13030–13035.

    Article  PubMed  CAS  Google Scholar 

  2. Gerstenfeld LC, Shapiro FD: Expression of bone-specific genes by hypertrophic chondrocytes: implication of the complex functions of the hypertrophic chondrocyte during endo-chondral bone development. J Cell Biochem 1996, 62:1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Amling M, Neff L, Tanaka S, et al.: Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 1997, 136:205–213.

    Article  PubMed  CAS  Google Scholar 

  4. Duprez D, Bell EJ, Richardson MK, et al.: Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 1996, 57 145–157.

    Article  PubMed  CAS  Google Scholar 

  5. Carey DE, Liu X: Expression of bone morphogenetic protein-6 messenger RNA in bovine growth plate chondrocytes of different size. J Bone Min Res 1995, 10:401–405.

    Article  CAS  Google Scholar 

  6. Terkeltaub R, Johnson K, Rohnow D, et al.:Bone Morphoge-netic Proteins (BMPs) and bFGF exert opposing regulatory effects on PTHrP expression and inorganic pyrophosphate elaboration in immortalized murine endochondral hyper-trophic chondrocytes. J Bone Min Res 1998, 13:931–941.

    Article  CAS  Google Scholar 

  7. Terkeltaub R, Lotz M, Johnson K, et al.: Parathyroid hormone related protein (PTHrP) expression is abundant in osteo-arthritic cartilage, and the PTHrP 1-173 isoform is selectively induced by TGFb in articular chondrocytes, and suppresses extracellular inorganic pyrophosphate generation. Arthritis Rheum 1998, 41:2152–2164. This paper demonstrated that PTHrP expression is increased in osteoarthritic cartilage, and revealed selective expression of one isoform, PTHrP 1-173, and a unique function for this isoform.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson K, Moffa A, Pritzker K, et al.: Matrix vesicle Plasma Cell Membrane Glycoprotein-1 (PC-1) regulates mineraliza-tion by murine osteoblastic MC3T3 cells. J Bone Min Res 1999, 14:883–892.

    Article  CAS  Google Scholar 

  9. Johnson K: Differential mechanisms of PPi production b Plasma Cell Membrane Glycoprotein-1 (PC-1) and B10 in chondrocytes. Arthritis Rheum 1999, in press. This paper characterized in detail the differential subcellular localiza-tions and functions of the 2 major PPi-producing NTPPPH isozymes in articular cartilge, PC-1 and B10.

  10. Vortkamp A, Lee K, Lanske B, et al.: Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 1996, 273:613–622.

    Article  PubMed  CAS  Google Scholar 

  11. Serra R, Karaplis A, Sohn P: Parathyroid hormone-related peptide (PTHrP)-dependent and -independent effects o transforming growth factor beta (TGF-b) on endochondral bone formation. J Cell Biology 1999, 145:783–794.

    Article  CAS  Google Scholar 

  12. Amizuka N, Henderson JE, Hoshi K, et al.: Programmed cell death of chondrocytes and aberrant chondrogenesis in mice homozygous for parathyroid hormone-related peptide gene deletion. Endocrinology 1996, 137:5055–5067.

    Article  PubMed  CAS  Google Scholar 

  13. Weir EC, Philbrick WM, Amling M, et al.: Targeted overexpres-sion of parathyroid hormone-related peptide causes chon-drodysplasia and delayed endochondral bone formation. Development Biol 1996, 93:10240–10245.

    CAS  Google Scholar 

  14. Deng C, Wynshaw-Boris A, Zhou F, et al.: Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996, 84:911–921.

    Article  PubMed  CAS  Google Scholar 

  15. Pedrozo HA, Schwartz Z, Mokeyev T, et al.: Vitamin D3 metab-olites regulate LTBP1 and latent TGF-b1 expression and latent TGF-b1 incorporation in the extracellular matrix of chondrocytes. J Cell Biochem 1999, 72:151–165.

    Article  PubMed  CAS  Google Scholar 

  16. Gerber HP, Vu TH, Ryan AM, et al.: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Med 1999, 5:623–628.

    Article  PubMed  CAS  Google Scholar 

  17. Eerola I, Salminen H, Lammi P, et al.: Type X collagen, a natu-ral component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum 1998, 41:1287–1295.

    Article  PubMed  CAS  Google Scholar 

  18. Kirsch T, Nah HD, Shapiro IM, et al.: Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 1997, 137:1149–1160.

    Article  PubMed  CAS  Google Scholar 

  19. Serra R, Johnson M, Filvaroff EH, et al.: Expression of a trun-cated, kinase-defective TGF-b type II receptor in mouse skele-tal tissue promotes terminal chondrocyte differentiation and osteoarthritis. J Cell Biol 1997, 139:541–552.

    Article  PubMed  CAS  Google Scholar 

  20. Moos V, Fickert S, Muller B, et al.: Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J Rheumatol 1999, 26:870–879.

    PubMed  CAS  Google Scholar 

  21. Rosen F, McCabe G, Quach J, et al.: Differential effects of aging on human chondrocyte responses to TGFb: Increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum 1997, 40:1275–1281. This paper revealed that chondrocytes from aged human subjects proliferate less but elaborate more PPi in response to TGFb.

    PubMed  CAS  Google Scholar 

  22. Ishikawa K, Masuda I, Ohira T, et al.: A histological study of calcium pyrophosphate dihydrate crystal-deposition disease. J Bone Joint Surg. American Volume 1989, 71:875–886.

    CAS  Google Scholar 

  23. Rosenthal AK, Henry LA: Thyroid hormones induce features of the hypertrophic phenotype and stimulate correlates of CPPD crystal formation in articular chondrocytes. J Rheumatol 1999, 26:395–401.

    PubMed  CAS  Google Scholar 

  24. Hashimoto S, Ochs RL, Komiya S, et al.: Linkage of chondro-cyte apoptosis and cartilage degradation in human osteo-arthritis. Arthritis Rheum 1998, 41:1632–1638.

    Article  PubMed  CAS  Google Scholar 

  25. Blanco FJ, Guitian R, Vazquez-Martul E, et al.: Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum 1998, 41:284–189.

    Article  PubMed  CAS  Google Scholar 

  26. Kuhn K, Hashimoto S, Lotz M: Cell density modulates apopto-sis in human articular chondrocytes. J Cell Physiol 1999, 180:439–447.

    Article  PubMed  CAS  Google Scholar 

  27. Lotz M: The role of nitric oxide in articular cartilage damage. Rheum Dis Clin North Am 1999, 25:269–282.

    Article  PubMed  CAS  Google Scholar 

  28. Hashimoto S, Ochs RL, Rosen F, et al.: Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. PNAS 1998, 95:3094–3099.

    Article  PubMed  CAS  Google Scholar 

  29. Ryan LM, Kurup IV, Cheung HS: Transduction mechanisms of porcine chondrocyte inorganic pyrophosphate elaboration. Arthritis Rheum 1999, 42:555–560.

    Article  PubMed  CAS  Google Scholar 

  30. Rosenthal AK, Ryan LM: Ageing increases growth factor-induced inorganic pyrophosphate elaboration by articular cartilage. Mechanisms of Ageing and Development 1994, 75 35–44.

    Article  PubMed  CAS  Google Scholar 

  31. Lotz M, Rosen F, McCabe G, et al.: Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes. PNAS 1995, 92:10364–10368.

    Article  PubMed  CAS  Google Scholar 

  32. Goding J, Terkeltaub R, Maurice M, et al.: Ecto-phospho-diesterase/ pyrophosphatase of lymphocytes and non-lymphoid cells: structure and function of the PC-1 family. Immunology Reviews 1998, 161:11–26.

    Article  CAS  Google Scholar 

  33. Cardenal A, Masuda I, Haas AL, et al.: Specificity of a porcine 127-kd nucleotide pyrophosphohydrolase for articular tissues. Arthritis Rheum 1996, 39:245–251.

    Article  PubMed  CAS  Google Scholar 

  34. Ryan LM, Kurup IV, Derfus BA et al.: ATP-induced chondro-calcinosis. Arthritis Rheum 1992, 35:1520–1525.

    Article  PubMed  CAS  Google Scholar 

  35. Lorenzo P, Bayliss MT, Heinegard D: A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J Biol Chem 1998, 273:23463–23468. This paper described the increased expression of CILP in the mid-zone interterritorial matrix of aging cartilage, the area in which CPPD crystals generally deposit in chondrocalcinosis. CILP has not yet been established to have enzyme activity, however.

    Article  PubMed  CAS  Google Scholar 

  36. Lorenzo P, Neame P, Sommarin Y, et al.: Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophospho-hydrolase. J Biol Chem 1998, 273:23469–23475.

    Article  PubMed  CAS  Google Scholar 

  37. Masuda I, Halligan BD, Barbieri JT, et al.: Molecular cloning and expression of a porcine chondrocyte nucleotide pyrophosphohydrolase. Gene 1997, 197:277–287.

    Article  PubMed  CAS  Google Scholar 

  38. Scott LJ, Delautier D, Meerson NR, et al.: Biochemical and molecular identification of distinct forms of alkaline phosphodiesterase I expressed on the apical and basolateral plasma membrane surfaces of rat hepatocytes. Hepatology 1997, 25:995–1002.

    Article  PubMed  CAS  Google Scholar 

  39. Okawa A, Nakamura I, Goto S, et al.: Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nature Gen 1998, 19:271–273. This paper linked deficient PC-1 expression to hydroxyapatite deposi-tion in mouse articular cartilage, and to an enthesopathic hypermin-eralizing disorder.

    Article  CAS  Google Scholar 

  40. Anderson HC: Molecular biology of matrix vesicles Clin Orthopaed Rel Res 1995, 314:266–280.

    Google Scholar 

  41. Greenberg CS, Birckbichler PJ, Rice RH: Transglutaminases: Multifunctional crosslinking enzymes that stabilize tissues. FASEB J 1991, 5:3071–3078.

    PubMed  CAS  Google Scholar 

  42. Kojima S, Nara K, Rifkin DB: Requirement for Transglutami-nase in the activation of latent Transforming Growth Factor-b in bovine endothelial cells. J Cell Biol 1993, 121:439–448.

    Article  PubMed  CAS  Google Scholar 

  43. Aeschlimann D, Mosher D, Paulsson M: Tissue transglutami-nase and factor XIII in cartilage and bone remodeling. Semin Thromb Haemostas 1996, 22:437–443.

    Article  CAS  Google Scholar 

  44. Rosenthal AK, Derfus BA, Henry LA: Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthritis Rheum 1997, 40:966–970. s paper linked increased tissue TGase activity to aging in porcine articular cartilage

    Article  PubMed  CAS  Google Scholar 

  45. Borge L, Demignot S, Adolphe M: Type II transglutaminase expression in rabbit articular chondrocytes in culture: relation with cell differentiation, cell growth, cell adhesion and cell apoptosis. Biochim Biophys Acta 1996; 1312:117–124.

    Article  PubMed  Google Scholar 

  46. Nurmiskaya M, Magee C, Nurminsky D, et al.: Plasma trans-lutaminase in hypertrophic chondrocytes: Expression and cell-specific intracellular activation produce cell death and externalization; J Cell Biol 1998, 142(4):1135–1144.

    Article  Google Scholar 

  47. Melino G, Piacentini M: Tissue transglutaminase in cell death: a downstream or a multifunctional upstream effector? FEBS Let 1998, 430:59–63.

    Article  CAS  Google Scholar 

  48. Aeschlimann D, Wetterwald A, Fleisch H, et al.: Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation in chondrocytes. J Cell Biol 1993, 120:1461–1470.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang J, Lesort M, Guttmann RP, et al.: Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 1998, 273:2288–2295.

    Article  PubMed  CAS  Google Scholar 

  50. Iwamoto M, Shapiro IM, Yagami K, et al.: Retinoic acid induces rapid mineralization and expression of mineralization-related genes in chondrocytes. Exp Cell Res 1993, 207:413–420.

    Article  PubMed  CAS  Google Scholar 

  51. Expression of tissue transglutaminase in the developing chicken limb is associated both with apoptosis and endo-chondral ossification. Cell Death Diff, 1999, 6:146–154.

  52. Lajemi M, Demignot S, Adolphe M: Detection and character-ization, using fluoresceincadaverine, of amine acceptor protein substrates accessible to active transglutaminase expressed by rabbit articular chondrocytes. Histochem J 1998, 30:499–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpouzas, G.A., Terkeltaub, R.A. New developments in the pathogenesis of articular cartilage calcification. Curr Rheumatol Rep 1, 121–127 (1999). https://doi.org/10.1007/s11926-999-0008-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-999-0008-2

Keywords

Navigation