Skip to main content
Log in

Crystal-induced inflammatio and cartilage degradation

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

In the past year, there have been advances in our understanding of the induction of cartilage damage by calcium-containing crystals. Mechanisms of deposition and the biologic effects of crystals have been further characterized, as has the interaction between crystals and leukocytes. Studies of the clinical diagnosis of crystal deposition diseases suggest that accuracy with microscopy needs to be enhanced. Normal val ues for serum NTPPPHase have been established and optimal diagnostic imaging strategies for calcium pyrophosphate deposition disease have been suggested. There are still no available drugs to inhibit deposition or effect reabsorption of calcium-containing crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cheung HS, Ryan LM: Role of crystal deposition in matrix degradation. In Joint Cartilage Degradation. Edited byWoessner JF, Howell DS. New York: Marcel Dekker; 1993:209–223.

    Google Scholar 

  2. Halverson PB, McCarty DJ: Patterns of radiographic abnor-malities associated with basic calcium phosphate and calcium pyrophosphate crystal deposition in the knee. Ann Rheum Dis 1986, 45:603–605.

    Article  PubMed  CAS  Google Scholar 

  3. Carroll GJ, Stuart RA, Armstrong JA, et al.: Hydroxyapatite crystals are a frequent finding in osteoarthritic synovial fluid, but are not related to increased concentrations of keratan sulfate or interleukin 1b. J Rheumatol 1991, 18:861–866.

    PubMed  CAS  Google Scholar 

  4. Gout, hyperuricemia, and other crystal-associated arthropathies, 1st edn. Smyth C, Holers, eds. New York: Marcel Dekker; 1999. This textbook provides a number of excellent and up-to-date reviews of all aspects of crystal deposition disease.

  5. Dijkgraaf L, Liem R, and de Bont L, Temporomandibular joint osteoarthritis and crystal deposition diseases: a study of crys-tals in synovial fluid lavages in osteoarthritic temporomandib-ular joints. Int J Oral Maxillofac Surg 1998, 27:268–273.

    Article  PubMed  CAS  Google Scholar 

  6. Berlemann U, Gries NC, Moore RJ, et al.: Calcium pyrophos-phate dihydrate deposition in degenerate lumbar discs. Eur Spine J 1998, 7:45–49.

    Article  PubMed  CAS  Google Scholar 

  7. Constantin,A. and G. Bouteiller, Acute neck pain and fever as the first manifestation of chondrocalcinosis with calcifica-tion of the transverse ligament of the atlas. Five case reports with a literature review. Rev Rhum Engl Ed 1998, 65:583–585.

    PubMed  CAS  Google Scholar 

  8. Beltran J, Marty-Delfaut E, Bencardino J, et al.: Chondrocalci-nosis of the hyaline cartilage of the knee: MRI manifesta-tions. Skeletal Radiol 1998, 27:369–374. The optimal imaging strategies for chondrocalcinosis of the knee are presented and discussed.

    Article  PubMed  CAS  Google Scholar 

  9. McGill N, V. McGill: Quality assurance for synovial fluid examination for crystals: an improved method. Ann Rheum Dis 1997, 56:504–506.

    PubMed  CAS  Google Scholar 

  10. von Essen R, Holtta A, Pikkaroinen R: Quality control of synovial fluid crystal identification. Ann Rheum Dis 1998, 57 107–109. The need for improvements in detection of crystals in synovial fluid samples is illustrated.

    Google Scholar 

  11. Masuda I, Hamada J, Haas AL, et al.: A unique ectocucleotide pyrophosphohydrolase associated with porcine chondrocyte-derived vesicles. J Clin Invest 1995, 95:699–704.

    PubMed  CAS  Google Scholar 

  12. Masuda I, Cardenal A, Ono W, et al.: Nucleotide pyrophospho-hydrolase in human synovial fluids. J Rheumatol 1997, 24:588–594.

    Google Scholar 

  13. Cardenal A, Masuda I, Ono W, et al.: Serum nucleotide pyro-phosphohydrolase activity; elevated levels in osteoarthritis, calcium pyrophosphate crystal deposition disease, sclero-derma, and fibromyalgia. J Rheumatol 1998, 25:2175–2180. Serum ectonucleotide pyrophosphohydrolase in a variety of muscu-loskeletal conditions is quantified and normal values are established.

    PubMed  CAS  Google Scholar 

  14. Derfus BA, Rachow JW, Mandel NS, et al.: Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum 1992, 35:231–240.

    Article  PubMed  CAS  Google Scholar 

  15. Einhorn T, Gordon SL, Siegel SA, et al.: Matrix vesicle enzymes in human osteoarthritis. J Orthop Res 1985, 3:160–169.

    Article  PubMed  CAS  Google Scholar 

  16. Derfus B, Kranendonk S, Camacho N, et al.: Human osteo-arthritic cartilage matrix vesicles generate both calcium pyro-phosphate dihydrate and apatite in vitro. Calcif Tiss Int 1998, 63:258–262. Demonstration of the ability of osteoarticular cartilage matrix vesicles to generate calcium pyrophosphate dihydrate and hydroxyapatite crystals in vitro.

    Article  CAS  Google Scholar 

  17. Masuda I, Halligan BD, Barbieri JT, et al.: Molecular cloning and expression of a porcine chondrocyte nucleotide pyro-phosphohydrolase. Gene 1997, 197:277–287.

    Article  PubMed  CAS  Google Scholar 

  18. Lorenzo P, Bayliss M, Heinegard D: A novel cartilage protein (CILP) present in the mid-zone of human articular cartilage increases with age. J Biol Chem 1998, 273:23463–23468.

    Article  PubMed  CAS  Google Scholar 

  19. Lorenzo P, Nearne P, Sommarin Y, et al.: Cloning and deduced amino acid sequence of a novel cartilage protein (CILP) identifies a proform including a nucleotide pyrophospho-hydrolase. J Biol Chem 1998, 273:23469–23475. Isolation and peptide mapping of cartilage intermediate layer protein (CILP) from human articular cartilage resulted in the characterization of the full-length cDNA coding for a novel extracellular macromole-cule that acts as a precursor for two different proteins, CILP and a pro-tein homologous to porcine NTPPPHase.

    Article  PubMed  CAS  Google Scholar 

  20. Cheung HS, Story MT, McCarty DJ: Mitogenic effects of hydroxyapatite and calcium pyrophosphate dihydrate crystals on cultured mammalian cells. Arthritis Rheum 1984, 27:668–674.

    Article  PubMed  CAS  Google Scholar 

  21. McCarthy GM, Augustine JA, Baldwin AS, et al.: Molecular mechanism of basic calcium phosphate crystal-induced activation of human fibroblasts. Role of nuclear factor kB, activator protein 1 and protein kinase c. J Biol Chem 1998, 273:35161–35169. This paper details the specificity of basic calcium phosphate crystal-induced cell activation.

    Article  PubMed  CAS  Google Scholar 

  22. Halverson P, Greene A, and Cheung H: Intracellular calcium responses to basic calcium phosphate crystals in fibroblasts. Osteoarthritis Cartilage 1998, 6:324–329. This paper describes the biphasic intracellular calcium response to basic calcium phosphate crystals as determined by the photoactive dye, fura-2.

    Article  PubMed  CAS  Google Scholar 

  23. McCarthy GM, Mitchell PG, Struve JA, et al.: Basic calcium phos-phate crystals cause co-ordinate induction and secretion of collagenase and stromelysin. J Cell Physiol 1992, 153:140–146.

    Article  PubMed  CAS  Google Scholar 

  24. McCarthy G, Macius AM, Christopherson PA, et al.: Basic calcium phosphate crystals induce synthesis and secretion of 92-kD gelatinase (matrix metalloproteinase 9/gelatinase B) in human fibroblasts. Ann Rheum Di 1998, 57:56–60. The biologic effects of basic calcium phosphate crystals important for pathogenesis are further characterized here.

    Article  CAS  Google Scholar 

  25. Cheung HS, McCarty DJ: Mitogenesis induced by calcium-containing crystals: role of intracellular dissolution. Exp Cell Res 1985, 157:63–70.

    Article  PubMed  CAS  Google Scholar 

  26. Borkowf A, Cheung HS, McCarty DJ: Endocytosis is required for the mitogenic effect of basic calcium phosphate crystals. Calcif Tiss Int 1987, 40:173–176.

    Article  CAS  Google Scholar 

  27. McCarthy GM, Cheung HS, Abel SM, et al.: Basic calcium phos-phate crystal-induced collagenase production:role of intracel-lular crystal dissolution. Osteoarthritis Cartilage 1998, 6:205–213. The feasibility of inhibition of intracellular crystal dissolution as a therapeutic maneuver is explored.

    Article  PubMed  CAS  Google Scholar 

  28. Cheung H, Sallis J, Struve J: Specific inhibition of basic calcium phosphate and calcium pyrophosphate crystal-induction of metalloproteinase synthesis by phosphocitrate. Biochim Biophys Acta 1996, 1315:105–111.

    PubMed  Google Scholar 

  29. Nair D, Misra RP, Sallis JD, et al.: Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem 1997, 272:18920–18925.

    Article  PubMed  CAS  Google Scholar 

  30. Pelletier JP, Roughley PJ, DiBattista JA, et al.: Are cytokines involved in osteoarthritic pathophysiology? Semin Arthritis Rheum 1991, 20(suppl):12–25.

    Article  PubMed  CAS  Google Scholar 

  31. DiGiovine F, Malawista SE, Thorton E, et al.: Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. J Clin Invest 1991, 87:1375–1381.

    CAS  Google Scholar 

  32. Meng Z, Hudson AP, Schumacher HR, et al.: Monosodium urate, hydroxyapatite, and calcium pyrophosphate crystals induce tumor necrosis factor a expression in a mononuclear cell line. J Rheumatol 1997, 24:2385–2388.

    PubMed  CAS  Google Scholar 

  33. Baggiolini M, Dewald B, Moser B: Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv Immunol 1994, 55:97–179.

    PubMed  CAS  Google Scholar 

  34. Nishimura A, Akahoshi T, Takahashi M, et al.: Attenuation of monosodium urate crystal-induced arthritis in rabbits by a neutralizing antibody against interleukin-8. J Leukoc Biol 1997, 62:444–449.

    PubMed  CAS  Google Scholar 

  35. Terkeltaub R, Baird S, Sears P, et al.: The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurence of neutrophilic inflammation in the air pouch model of acute crystal-induced gouty synovitis. Arthritis Rheum 1998, 41:900–909. The data described in this paper support a critical role of the IL-8 receptor CXCR2 in acute MSU crystal-induced air pouch synovitis in vivo.

    Article  PubMed  CAS  Google Scholar 

  36. Pouliot M, James MJ, McColl SR, et al.: Monosodium urate microcrystals induce cyclooxygenase-2 in human monocytes. Blood 1998, 91:1769–1776. The role of cyclo-oxygenase-2 in monosodium urate crystal-induced inflammation is contrasted with its role in calcium pyrophosphate dihydrate crystal-induced inflammation.

    PubMed  CAS  Google Scholar 

  37. Tudan C, Jackson JK, Charlton L, et al.: Activation of S6 kinase in human neutrophils by calcium pyrophosphate dihydrate crystals: protein kinase C-dependent and phosphatidylinositol-3-kinase-independent pathways. Biochem J 1988, 331:531–537. The transcriptional regulation of neutrophil activation by calcium pyrophosphate crystals is further elucidated.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, G.M. Crystal-induced inflammatio and cartilage degradation. Curr Rheumatol Rep 1, 101–106 (1999). https://doi.org/10.1007/s11926-999-0005-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-999-0005-5

Keywords

Navigation