Skip to main content

Advertisement

Log in

Insights into the role of infection in the spondyloarthropathies

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Certain infections play an important role in the pathogenesis of the human leukocyte antigen (HLA)-B27-associated reactive arthritis. Whether infections play a role in other forms of spondyloarthropathies is not as clear. The role of HLA-B27 as an antigen-presenting molecule is important in the pathogenesis of these diseases. Recent evidence has been obtained indicating that this molecule may have other functions unrelated to antigen-presentation in the interaction of reactive arthritis-triggering microbes and host. This paper reviews the recent studies on the role of infection in the spondyloarthropathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Dougados M, van der Linden S, Juhlin R, et al.: The European Spondylarthropathy Study Group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum 1991, 34:1218–1227.

    Article  PubMed  CAS  Google Scholar 

  2. Granfors K: Do bacterial antigens cause reactive arthritis? Rheum Dis Clin North Am 1992, 18:37–48.

    PubMed  CAS  Google Scholar 

  3. Sieper J, Braun J: Pathogenesis of spondylarthropathies: persistent bacterial antigen, autoimmunity, or both? Arthritis Rheum 1995, 38:1547–1554. This review discusses the different possibilities by which the HLA-B27 molecule plays its role in the pathogenesis of SpA.

    Article  PubMed  CAS  Google Scholar 

  4. Yu DT: Pathogenesis of reactive arthritis. Intern Med 1999, 38:97–101. This review comprehensively discusses the pathogenesis of SpA in relation to HLA-B27 and ReA-triggering bacteria.

    Article  PubMed  CAS  Google Scholar 

  5. Ahvonen P, Sievers K, Aho K: Arthritis associated with Yersinia enterocolitica infection. Acta Rheumatol Scand 1969, 15:232–253.

    PubMed  CAS  Google Scholar 

  6. Tertti R, Granfors K, Lehtonen OP, et al.: An outbreak of Yersinia pseudotuberculosis infection. J Infect Dis 1984, 149:245–250.

    PubMed  CAS  Google Scholar 

  7. Fordham JN, Maitra S: Post-yersinial arthritis in Cleveland, England. Ann Rheum Dis 1989, 48:139–142.

    Article  PubMed  CAS  Google Scholar 

  8. Lee VT, Schneewind O: Type III secretion machines and the pathogenesis of enteric infections caused by Yersinia and Salmonella spp. Immunol Rev 1999, 168:241–255.

    Article  PubMed  CAS  Google Scholar 

  9. Mäki-Ikola O, Granfors K: Salmonella-triggered reactive arthritis. Lancet 1992, 339:1096–1098.

    Article  PubMed  Google Scholar 

  10. Ekman P, Kirveskari J, Granfors K: Modification of disease outcome in Salmonella-infected patients by HLA-B27. Arthritis Rheum 2000, 43:1527–1534. A report on the role of HLA-B27 in the outcome of Salmonella infection. Joint symptoms were surprisingly common during or after Salmonella infection. HLA-B27-positive patients had a significantly increased risk of developing joint and tendon symptoms. Moreover, HLA-B27 positivity correlated with the development of more severe and prolonged joint symptoms.

    Article  PubMed  CAS  Google Scholar 

  11. Mattila L, Leirisalo-Repo M, Pelkonen P, et al.: Reactive arthritis following an outbreak of Salmonella bovismorbificans infection. J Infect 1998, 36:289–295.

    Article  PubMed  CAS  Google Scholar 

  12. Fendler C, Laitko S, Sorensen H, et al.: Frequency of triggering bacteria in patients with reactive arthritis and undifferentiated oligoarthritis and the relative importance of the tests used for diagnosis. Ann Rheum Dis 2001, 60:337–343.

    Article  PubMed  CAS  Google Scholar 

  13. Braun J, Laitko S, Treharne J, et al.: Chlamydia pneumoniae —a new causative agent of reactive arthritis and undifferentiated oligoarthritis. Ann Rheum Dis 1994, 53:100–105.

    Article  PubMed  CAS  Google Scholar 

  14. Hannu T, Puolakkainen M, Leirisalo-Repo M: Chlamydia pneumoniae as a triggering infection in reactive arthritis. Rheumatology (Oxford) 1999, 38:411–414.

    Article  CAS  Google Scholar 

  15. Pile KD, Richens JE, Laurent RM, et al.: Arthritis in the highlands of Papua New Guinea. Ann Rheum Dis 1993, 52:49–53.

    Article  PubMed  CAS  Google Scholar 

  16. Erlacher L, Wintersberger W, Menschik M, et al.: Reactive arthritis: urogenital swab culture is the only useful diagnostic method for the detection of the arthritogenic infection in extra-articularly asymptomatic patients with undifferentiated oligoarthritis. Br J Rheumatol 1995, 34:838–842.

    Article  PubMed  CAS  Google Scholar 

  17. Henry CH, Hughes CV, Gerard HC, et al.: Reactive arthritis: preliminary microbiologic analysis of the human temporomandibular joint. J Oral Maxillofac Surg 2000, 58:1137–1142.

    Article  PubMed  CAS  Google Scholar 

  18. Laasila K, Leirisalo-Repo M: Recurrent reactive arthritis associated with urinary tract infection by Escherichia coli. J Rheumatol 1999, 26:2277–2279.

    PubMed  CAS  Google Scholar 

  19. Ebringer A: Ankylosing spondylitis is caused by Klebsiella. Evidence from immunogenetic, microbiologic, and serologic studies. Rheum Dis Clin North Am 1992, 18:105–121.

    PubMed  CAS  Google Scholar 

  20. Hohler T, Hug R, Schneider PM, et al.: Ankylosing spondylitis in monozygotic twins: studies on immunological parameters. Ann Rheum Dis 1999, 58:435–440. Eleven monozygotic twin pairs (nine with AS, two with uSpA) were investigated for immune parameters. Twins suffering from AS showed cellular hyporeactivity against Klebsiella pneumoniae, S. pyogenes, C. albicans. AS-concordant twins showed the most pronounced differences in their Vb repertoire on CD4+ and CD8+ lymphocytes.

    Article  PubMed  CAS  Google Scholar 

  21. Mäki-Ikola O, Hallgren R, Kanerud L, et al.: Enhanced jejunal production of antibodies to Klebsiella and other Enterobacteria in patients with ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis 1997, 56:421–425.

    Article  PubMed  Google Scholar 

  22. Mäki-Ikola O, Lehtinen K, Nissila M, et al.: IgM, IgA and IgG class serum antibodies against Klebsiella pneumoniae and Escherichia coli lipopolysaccharides in patients with ankylosing spondylitis. Br J Rheumatol 1994, 33:1025–1029.

    Article  PubMed  Google Scholar 

  23. Mielants H, De Vos M, Cuvelier C, et al.: The role of gut inflammation in the pathogenesis of spondyloarthropathies. Acta Clin Belg 1996, 51:340–349. The authors discussed the relationship between gut and joint inflammation and proposed a form of subclinical Crohn’s disease in patients with SpA. In addition, therapeutic consequences of the subclinical gut inflammation in the SpA were addressed.

    PubMed  CAS  Google Scholar 

  24. Mäki-Ikola O, Leirisalo-Repo M, Turunen U, et al.: Association of gut inflammation with increased serum IgA class Klebsiella antibody concentrations in patients with axial ankylosing spondylitis (AS): implication for different aetiopathogenetic mechanisms for axial and peripheral AS? Ann Rheum Dis 1997, 56:180–183.

    Article  PubMed  Google Scholar 

  25. Sieper J, Braun J, Kingsley GH: Report on the Fourth International Workshop on Reactive Arthritis. Arthritis Rheum 2000, 43:720–734.

    Article  PubMed  CAS  Google Scholar 

  26. Vasey FB, Deitz C, Fenske NA, et al.: Possible involvement of group A streptococci in the pathogenesis of psoriatic arthritis. J Rheumatol 1982, 9:719–722.

    PubMed  CAS  Google Scholar 

  27. Wang Q, Vasey FB, Mahfood JP, et al.: V2 regions of 16S ribosomal RNA used as a molecular marker for the species identification of streptococci in peripheral blood and synovial fluid from patients with psoriatic arthritis. Arthritis Rheum 1999, 42:2055–2059.

    Article  PubMed  CAS  Google Scholar 

  28. Winchester R: Psoriatic arthritis and the spectrum of syndromes related to the SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome. Curr Opin Rheumatol 1999, 11:251–256.

    Article  PubMed  CAS  Google Scholar 

  29. Njobvu P, McGill P: Psoriatic arthritis and human immunodeficiency virus infection in Zambia. J Rheumatol 2000, 27:1699–1702.

    PubMed  CAS  Google Scholar 

  30. Espinoza LR, Jara LJ, Espinoza CG, et al.: There is an association between human immunodeficiency virus infection and spondyloarthropathies. Rheum Dis Clin North Am 1992, 18:257–266.

    PubMed  CAS  Google Scholar 

  31. Braun J, Tuszewski M, Ehlers S, et al.: Nested polymerase chain reaction strategy simultaneously targeting DNA sequences of multiple bacterial species in inflammatory joint diseases, II: Examination of sacroiliac and knee joint biopsies of patients with spondyloarthropathies and other arthritides. J Rheumatol 1997, 24:1101–1105.

    PubMed  CAS  Google Scholar 

  32. Braun J, Tuszewski M, Eggens U, et al.: Nested polymerase chain reaction strategy simultaneously targeting DNA sequences of multiple bacterial species in inflammatory joint diseases, I: Screening of synovial fluid samples of patients with spondyloarthropathies and other arthritides. J Rheumatol 1997, 24:1092–1100.

    PubMed  CAS  Google Scholar 

  33. Duchmann R, May E, Heike M, et al.: T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999, 44:812–818.

    Article  PubMed  CAS  Google Scholar 

  34. Breban M, Falgarone G, Blanchard H, et al.: Animal models of the spondyloarthropathies. Curr Rheumatol Rep 2000, 2:282–287. A review on the animal models of SpA in which the importance of these models in the study of pathogenesis of SpA is addressed.

    Article  PubMed  CAS  Google Scholar 

  35. Taurog JD, Maika SD, Satumtira N, et al.: Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 1999, 169:209–223. A review on the HLA-B27 transgenic rats in which the role of HLA-B27 peptide presentation in the development of arthritis was discussed.

    Article  PubMed  CAS  Google Scholar 

  36. Khare SD, Luthra HS, David CS: Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med 1995, 182:1153–1158.

    Article  PubMed  CAS  Google Scholar 

  37. Rath HC, Herfarth HH, Ikeda JS, et al.: Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996, 98:945–953.

    Article  PubMed  CAS  Google Scholar 

  38. Granfors K, Jalkanen S, Lindberg AA, et al.: Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 1990, 335:685–688.

    Article  PubMed  CAS  Google Scholar 

  39. Granfors K, Jalkanen S, von Essen R, et al.:Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med 1989, 320:216–221. Yersinia antigen was detected for the first time in the synovial fluid cells from patients with Yersinia-triggered ReA, which then questioned how the bacteria components could be transported into the joints.

    Article  PubMed  CAS  Google Scholar 

  40. Granfors K, Merilahti-Palo R, Luukkainen R, et al.: Persistence of Yersinia antigens in peripheral blood cells from patients with Yersinia enterocolitica 0:3 infection with or without reactive arthritis. Arthritis Rheum 1998, 41:855–862. This is the first study to demonstrate directly that bacterial antigens persist for a long time in patients who develop ReA after Y. enterocolitica 0:3 infection. Yersinia antigens LPS and HSP were found in peripheral blood mononuclear cells and polymorphonuclear phagocytes from all patients observed during the early phase of the disease. These bacterial antigens were still detected at 4 years after the onset of infection in the peripheral blood cells from most of the ReA patients observed.

    Article  PubMed  CAS  Google Scholar 

  41. Granfors K, Viljanen M, Tiilikainen A, et al.: Persistence of IgM, IgG, and IgA antibodies to Yersinia in yersinia arthritis. J Infect Dis 1980, 141:424–429.

    PubMed  CAS  Google Scholar 

  42. Mäki-Ikola O, Leirisalo-Repo M, Kantele A, et al.:Salmonella-specific antibodies in reactive arthritis. J Infect Dis 1991, 164:1141–1148.

    PubMed  Google Scholar 

  43. Granfors K, Toivanen A: IgA-anti-yersinia antibodies in yersinia triggered reactive arthritis. Ann Rheum Dis 1986, 45:561–565.

    Article  PubMed  CAS  Google Scholar 

  44. Inman RD, Chiu B, Johnston ME, et al.: HLA class I-related impairment in IL-2 production and lymphocyte response to microbial antigens in reactive arthritis. J Immunol 1989, 142:4256–4260.

    PubMed  CAS  Google Scholar 

  45. Leino R, Vuento R, Koskimies S, et al.: Depressed lymphocyte transformation by yersinia and Escherichia coli in yersinia arthritis. Ann Rheum Dis 1983, 42:176–181.

    Article  PubMed  CAS  Google Scholar 

  46. Braun J, Yin Z, Spiller I, et al.: Low secretion of tumor necrosis factor alpha, but no other Th1 or Th2 cytokines, by peripheral blood mononuclear cells correlates with chronicity in reactive arthritis. Arthritis Rheum 1999, 42:2039–2044.

    Article  PubMed  CAS  Google Scholar 

  47. Kirveskari J, He Q, Leirisalo-Repo M, et al.: Enterobacterial infection modulates major histocompatibility complex class I expression on mononuclear cells. Immunology 1999, 97:420–428.

    Article  PubMed  CAS  Google Scholar 

  48. Märker-Hermann E, Schwab P: T-cell studies in the spondyloarthropathies. Curr Rheumatol Rep 2000, 2:297–305. A comprehensive review on the role of cellular immune responses in the pathogenesis of SpA.

    Article  PubMed  Google Scholar 

  49. Keat A, Thomas B, Dixey J, et al.: Chlamydia trachomatis and reactive arthritis: the missing link. Lancet 1987, 1:72–74.

    Article  PubMed  CAS  Google Scholar 

  50. Nanagara R, Li F, Beutler A, et al.: Alteration of Chlamydia trachomatis biologic behavior in synovial membranes: suppression of surface antigen production in reactive arthritis and Reiter’s syndrome. Arthritis Rheum 1995, 38:1410–1417.

    Article  PubMed  CAS  Google Scholar 

  51. Gerard HC, Branigan PJ, Schumacher HR, et al.: Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter’s syndrome are viable but show aberrant gene expression. J Rheumatol 1998, 25:734–742. Using RT-PCR to assess expression of genes from Chlamydia trachomatis in synovial tissues of patients with ReA/RS to determine viability and metabolic activity of the bacterium in joints of infected patients. Results showed that synovial Chlamydia are viable and metabolically active because primary rRNA transcripts and mRNA from Chlamydia genes specifying components of the bacterial protein synthetic system were present in most patient samples assayed.

    PubMed  CAS  Google Scholar 

  52. Gerard HC, Schumacher HR, El-Gabalawy H, et al.: Chlamydia pneumoniae present in the human synovium are viable and metabolically active. Microb Pathol 2000, 29:17–24.

    Article  CAS  Google Scholar 

  53. Granfors K, Jalkanen S, Toivanen P, et al.: Bacterial lipopolysaccharide in synovial fluid cells in Shigella triggered reactive arthritis. J Rheumatol 1992, 19:500.

    PubMed  CAS  Google Scholar 

  54. Ekman P, Nikkari S, Putto-Laurila A, et al.: Detection of Salmonella infantis in synovial fluid cells of a patient with reactive arthritis. J Rheumatol 1999, 26:2485–2488.

    PubMed  CAS  Google Scholar 

  55. Gaston JS, Cox C, Granfors K: Clinical and experimental evidence for persistent Yersinia infection in reactive arthritis. Arthritis Rheum 1999, 42:2239–2242.

    Article  PubMed  CAS  Google Scholar 

  56. Sieper J, Fendler C, Laitko S, et al.: No benefit of long-term ciprofloxacin treatment in patients with reactive arthritis and undifferentiated oligoarthritis: a three-month, multicenter, double-blind, randomized, placebo-controlled study. Arthritis Rheum 1999, 42:1386–1396.

    Article  PubMed  CAS  Google Scholar 

  57. Yli-Kerttula T, Luukkainen R, Yli-Kerttula U, et al.: Effect of a three month course of ciprofloxacin on the outcome of reactive arthritis. Ann Rheum Dis 2000, 59:565–570.

    Article  PubMed  CAS  Google Scholar 

  58. Lauhio A, Leirisalo-Repo M, Lahdevirta J, et al.: Double-blind, placebo-controlled study of three-month treatment with lymecycline in reactive arthritis, with special reference to Chlamydia arthritis. Arthritis Rheum 1991, 34:6–14.

    Article  PubMed  CAS  Google Scholar 

  59. de Koning J, Heesemann J, Hoogkamp-Korstanje JA, et al.:Yersinia in intestinal biopsy specimens from patients with seronegative spondyloarthropathy: correlation with specific serum IgA antibodies. J Infect Dis 1989, 159:109–112.

    PubMed  Google Scholar 

  60. Kirveskari J, Jalkanen S, Maki-Ikola O, et al.: Increased synovial endothelium binding and transendothelial migration of mononuclear cells during Salmonella infection. Arthritis Rheum 1998, 41:1054–1063.

    Article  PubMed  CAS  Google Scholar 

  61. Kuipers JG, Jurgens-Saathoff B, Bialowons A, et al.: Detection of Chlamydia trachomatis in peripheral blood leukocytes of reactive arthritis patients by polymerase chain reaction. Arthritis Rheum 1998, 41:1894–1895. Chlamydia trachomatis DNA was detected for the first time by polymerase chain reaction (PCR) in peripheral blood leukocytes in two patients with ReA. In one patient, Chlamydia DNA can be detected also in synovial fluid. PCR products were confirmed by direct DNA sequencing. The results indicated that bacteria could be disseminated within cells.

    Article  PubMed  CAS  Google Scholar 

  62. Wuorela M, Tohka S, Granfors K, et al.: Monocytes that have ingested Yersinia enterocolitica serotype 0:3 acquire enhanced capacity to bind to nonstimulated vascular endothelial cells via P-selectin. Infect Immun 1999, 67:726–732.

    PubMed  CAS  Google Scholar 

  63. Russmann H, Ruckdeschel K, Heesemann J: Translocation of Yersinia enterocolitica through an endothelial monolayer by polymorphonuclear leukocytes. Infect Immun 1996, 64:1016–1019.

    PubMed  CAS  Google Scholar 

  64. Salmi M, Andrew DP, Butcher EC, et al.: Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J Exp Med 1995, 181:137–149.

    Article  PubMed  CAS  Google Scholar 

  65. Baeten D: Immunology of the Synovial Membrane in Autoimmune Arthritis. Thesis, Gent University. 2000:75–89.

  66. Leirisalo-Repo M, Lauhio A, Repo H: Chemotaxis and chemiluminescence responses of synovial fluid polymorphonuclear leucocytes during acute reactive arthritis. Ann Rheum Dis 1990, 49:615–619.

    Article  PubMed  CAS  Google Scholar 

  67. Unanue ER, Allen PM: The basis for the immunoregulatory role of macrophages and other accessory cells. Science 1987, 236:551–557.

    Article  PubMed  CAS  Google Scholar 

  68. Kirveskari J, He Q, Holmstrom T, et al.: Modulation of peripheral blood mononuclear cell activation status during Salmonella-triggered reactive arthritis. Arthritis Rheum 1999, 42:2045–2054.

    Article  PubMed  CAS  Google Scholar 

  69. Penttinen MA, Sistonen L, Granfors K: HLA-B27 and HLA-A2 modulate LPS and Salmonella-induced NF-kB activation in U937 human monocytic cells. Arthritis Rheum 2000, 43:S265.

    Google Scholar 

  70. Kapasi K, Inman RD: HLA-B27 expression modulates gram-negative bacterial invasion into transfected L cells. J Immunol 1992, 148:3554–3559.

    PubMed  CAS  Google Scholar 

  71. Kapasi K, Inman RD: ME1 epitope of HLA-B27 confers class I-mediated modulation of gram-negative bacterial invasion. J Immunol 1994, 153:833–840.

    PubMed  CAS  Google Scholar 

  72. Virtala M, Kirveskari J, Granfors K: HLA-B27 modulates the survival of Salmonella enteritidis in transfected L cells, possibly by impaired nitric oxide production. Infect Immun 1997, 65:4236–4242.

    PubMed  CAS  Google Scholar 

  73. Ikawa T, Ikeda M, Yamaguchi A, et al.: Expression of arthritis-causing HLA-B27 on Hela cells promotes induction of c-fos in response to in vitro invasion by Salmonella typhimurium. J Clin Invest 1998, 101:263–272.

    Article  PubMed  CAS  Google Scholar 

  74. Laitio P, Virtala M, Salmi M, et al.: HLA-B27 modulates intracellular survival of Salmonella enteritidis in human monocytic cells. Eur J Immunol 1997, 27:1331–1338. The expression of the HLA-B27 antigen does not influence the uptake of S. enteritidis into U937 cells in vitro. HLA-B27 remarkably impairs the elimination of S. enteritidis within the HLA-B27 transfected U937 cells.

    Article  PubMed  CAS  Google Scholar 

  75. Inman RD, Chiu B, Pavne U: HLA-B27 modulates interaction of Salmonella typhimurium with class I HLA-transfected C1R cells. Arthritis Rheum 1996, 39:S297.

    Article  Google Scholar 

  76. Huppertz HI, Heesemann J: The influence of HLA B27 and interferon-gamma on the invasion and persistence of yersinia in primary human fibroblasts. Med Microbiol Immunol (Berl) 1996, 185:163–170.

    Article  CAS  Google Scholar 

  77. Liu Y, Ekman P, Gripenberg-Lerche C, et al.: Elimination of bacteria and production of inflammatory cytokines by HLA-B27-positive human peripheral blood monocytes during Salmonella enteritidis infection. Arthritis Rheum 2000, 43:S387.

    Article  Google Scholar 

  78. Granfors K, Liu Y, Ekman P, et al.: Uptake and killing of Yersinia by human monocytic cells; the influence of HLA-B27. Arthritis Rheum 2000, 43:S267.

    Google Scholar 

  79. Granfors K: Host-microbe interaction in reactive arthritis: does HLA-B27 have a direct effect? J Rheumatol 1998, 25:1659–1661.

    PubMed  CAS  Google Scholar 

  80. Colbert RA: HLA-B27 misfolding and spondyloarthropathies: not so groovy after all? J Rheumatol 2000, 27:1107–1109. A review on the role of HLA-B27 misfolding in the pathogenesis of SpA.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Penttinen, M.A. & Granfors, K. Insights into the role of infection in the spondyloarthropathies. Curr Rheumatol Rep 3, 428–434 (2001). https://doi.org/10.1007/s11926-996-0014-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-996-0014-6

Keywords

Navigation