Skip to main content
Log in

Osteoporosis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Bone mass is determined primarily by genetic influences, but exogenous factors may also play a major role. The prevention of osteoporosis can start at childhood. Optimal achievement of peak bone mass during childhood and adolescence is important to minimize future fracture risk. Chronic inflammatory diseases can have a detrimental effect on bone mass through a variety of mechanisms. Different diagnostic methods for detecting osteoporosis (eg, dual x-ray absorptiometry, quantitative computed tomography, ultrasounds) are in use or under investigation. New treatment options are available; among these, the use of bisphosphonates seems to be the more promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cassidy JT: Osteopenia and osteoporosis in children. Clin Exp Rheumatol 1999, 17:245–250.

    PubMed  CAS  Google Scholar 

  2. Ralston SH: The genetics of osteoporosis. Bone 1999, 25:85–86.

    Article  PubMed  CAS  Google Scholar 

  3. Cetin A, Celiker R, Dincer F, Ariyurek M: Bone mineral density in children with juvenile chronic arthritis. Clin Rheumatol 1998, 17:551–553.

    Article  PubMed  CAS  Google Scholar 

  4. Falcini F, Ermini M, Bagnoli F: Bone turnover is reduced in children with juvenile rheumatoid arthritis. J Endocrinol Invest 1998, 21:31–36.

    PubMed  CAS  Google Scholar 

  5. Havelka S, Vavrincova P, Stepan J: Metabolic bone status in young women with juvenile chronic arthritis. J Rheumatol 1993, 37:14–16.

    CAS  Google Scholar 

  6. Henderson CJ, Lovell DJ: Bone mineral content in juvenile rheumatoid arthritis—pilot project results. J Rheumatol 1991, 18:1–22.

    Google Scholar 

  7. Hillman L, Cassidy JT, Johnson L, et al.: Vitamin D metabolism and bone mineralization in children with juvenile rheumatoid arthritis. J Pediatr 1994, 121:910–916.

    Google Scholar 

  8. Hopp R, Degan J, Gallagher JC, Cassidy JT: Estimation of bone mineral density in children with juvenile rheumatoid arthritis. J Rheumatol 1991, 18:1235–1239.

    PubMed  CAS  Google Scholar 

  9. Kotaniemi A, Savolainen A, Kontiainen H, Kroger H:Estimation of central osteopenia in children with chronic polyarthritis treated with glucocorticoids. Pediatrics 1993, 91:1127–1130.

    PubMed  CAS  Google Scholar 

  10. Kotaniemi A: Growth retardation and bone loss as determinants of axial osteopenia in juvenile chronic arthritis. Scand J Rheumatol 1997, 26:14–18.

    Article  PubMed  CAS  Google Scholar 

  11. Pereira RMR, Corrente JE, Chahade WH, Yoshinari NH:Evaluation by dual x-ray absorptiometry (DXA) of bone mineral density in children with juvenile chronic arthritis. Clin Exp Rheumatol 1998, 16:495–501.

    PubMed  CAS  Google Scholar 

  12. Polito C, Strano CG, Rea L, et al.: Reduced bone mineral content and normal serum osteocalcin in non-steroid-treated patients with juvenile rheumatoid arthritis. Ann Rheum Dis 1995, 54:193–196.

    Article  PubMed  CAS  Google Scholar 

  13. Rabinovich EC: Bone mineral status in juvenile rheumatoid arthritis. J Rheumatol 2000, 27:34–41.

    Google Scholar 

  14. Varamos S, Ansell BM, Reeve J: Vertebral collapse in juvenile chronic arthritis: its relationships with glucocorticoid therapy. Calcif Tissue Int 1987, 41:75–78.

    Article  Google Scholar 

  15. Warady BD, Lindsley CB, Robinson RG, Lukert BP: Effects of nutritional supplementation on bone mineral status of children with rheumatic diseases receiving corticosteroid therapy. J Rheumatol 1994, 21:530–535.

    PubMed  CAS  Google Scholar 

  16. Pepmueller PH, Cassidy JT, Allen SH, Hillman LS: Bone mineralization and bone mineral metabolism in children with juvenile rheumatoid arthritis. Arthritis Rheum 1996, 39:746–757.

    Article  PubMed  CAS  Google Scholar 

  17. Brik R, Keidar Z, Schapira D, Israel O: Bone mineral density and turnover in children with systemic juvenile chronic arthritis. J Rheumatol 1998, 25:990–992.

    PubMed  CAS  Google Scholar 

  18. Kotaniemi A, Savolainen A, Kroger H, et al.: Development of bone mineral density at the lumbar spine and femoral neck in juvenile chronic arthritis: a prospective one year follow-up study. J Rheumatol 1998, 25:2450–2455.

    PubMed  CAS  Google Scholar 

  19. Kotaniemi A, Savolainen A, Kroger H, et al.: Weight-bearing physical activity, calcium intake, systemic glucocorticoids, chronic inflammation, and body constitution as determinants of lumbar and femoral bone mineral in juvenile chronic arthritis. Scand J Rheumatol 1999, 28:19–26. In this study, the authors analyzed the associations between BMD and several variables in a large cohort of patients with JCA, by means of factor and multiple regression analyses.

    PubMed  CAS  Google Scholar 

  20. Henderson CJ, Cawkwell GD, Specker BL, et al.: Predictors of total body bone mineral density in non-corticosteroidtreated prepubertal children with juvenile rheumatoid arthritis. Arthritis Rheum 1997, 40:1967–1975.

    Article  PubMed  CAS  Google Scholar 

  21. Henderson CJ, Specker BL: Total-body bone mineral content in non-corticosteroid-treated postpubertal females with juvenile rheumatoid arthritis: frequency of osteopenia and contributing factors. Arthritis Rheum 2000, 43:531–540. The objective of this study was to determine the extent of low total body BMC in white post-pubertal females with JRA who were not treated with corticosteroids. Moreover, contributing factors to low BMC were searched by stepwise logistic regression.

    Article  PubMed  CAS  Google Scholar 

  22. Bologna C, Edno L, Anaya JM, et al.: Methotrexate concentrations in synovial membrane and trabecular and cortical bone in rheumatoid arthritis patients. Arthritis Rheum 1994, 37:1770–1773.

    Article  PubMed  CAS  Google Scholar 

  23. May KP, Mercill D, McDermott MT, West SG: The effect of methotrexate on mouse bone cells in culture. Arthritis Rheum 1996, 39:489–494.

    Article  PubMed  CAS  Google Scholar 

  24. May KP, West SG, McDermott MT, Huffer WE: The effect of low-dose methotrexate on bone metabolism and histomorphometry in rats. Arthritis Rheum 1994, 37:201–206.

    Article  PubMed  CAS  Google Scholar 

  25. Scheven BA, van der Veen MJ, Damen CA, et al.: Effects of methotrexate on human osteoblasts in vitro: modulation by 1,25-dihydroxyvitamin D3. J Bone Miner Res 1995, 10:874–880.

    Article  PubMed  CAS  Google Scholar 

  26. Bianchi ML, Cimaz R, Galbiati E, et al.: Bone mass change during methotrexate treatment in patients with juvenile rheumatoid arthritis. Osteoporos Int 1999, 10:20–25. The results of this study suggest that low-dose treatment with methotrexate does not interfere in vivo with bone mineralization in patients with JRA.

    Article  PubMed  CAS  Google Scholar 

  27. Zak M, Hassager C, Lovell DJ, et al.: Assessment of bone mineral density in adults with a history of juvenile chronic arthritis: a cross-sectional long-term follow-up study. Arthritis Rheum 1999, 42:790–798. This paper suggests that patients with JCA may be at risk of developing premature osteoporosis and associated fractures later in life.

    Article  PubMed  CAS  Google Scholar 

  28. Haugen M, Lien G, Flato B, et al.: Young adults with juvenile arthritis in remission attain normal peak bone mass at the lumbar spine and forearm. Arthritis Rheum 2000, 43:1504–1510. This study shows that most young adults with JA attain the same BMD as healthy subjects, but only if the disease goes into remission and not if it remains active.

    Article  PubMed  CAS  Google Scholar 

  29. Falcini F, Bindi G, Ermini M, et al.: Comparison of quantitative calcaneal ultrasound and dual energy x-ray absorptiometry in the evaluation of osteoporotic risk in children with chronic rheumatic diseases. Calcif Tiss Int 2000, 67:19–23. DXA and calcaneal ultrasound were compared in this study. A good correlation between the results of the two methods was found, indicating that ultrasounds can be a promising diagnostic tool for low bone mass in children with JRA.

    Article  CAS  Google Scholar 

  30. Adachi JD, Ioannidis G: Calcium and vitamin D therapy in corticosteroid-induced bone loss: what is the evidence? Calcif Tissue Int 1999, 65:332–326.

    Article  PubMed  CAS  Google Scholar 

  31. Rooney M, Davies UM, Reeve J, et al.: Bone mineral content and bone mineral metabolism: changes after growth hormone treatment in juvenile chronic arthritis. J Rheumatol 2000, 27:1073–1081. In this study, 20 children with JCA were treated with growth hormone. After treatment for 12 months, height velocity and bone mineral content increased.

    PubMed  CAS  Google Scholar 

  32. Russell RGG, Rogers MJ: Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999, 25:97–106.

    Article  PubMed  CAS  Google Scholar 

  33. Falcini F, Trapani S, Ermini M, Brandi ML: Intravenous administration of alendronate counteracts the in vivo effects of glucocorticoids on bone remodelling. Calcif Tissue Int 1996, 58:166–169.

    PubMed  CAS  Google Scholar 

  34. Shaw NJ, Boivin CM, Crabtree NJ: Intravenous pamidronate in juvenile osteoporosis. Arch Dis Child 2000, 83:143–145.

    Article  PubMed  CAS  Google Scholar 

  35. Shoemaker LR: Expanding role of bisphosphonate therapy in children. J Pediatr 1999; 134:264–267.

    Article  PubMed  CAS  Google Scholar 

  36. Srivastava T, Alon US: Bisphosphonates: from grandparents to grandchildren. Clin Pediatr 1999:687-699.

  37. Van Persijn van Meerten EL, Kroon HM, Papapoulos SE:Epi- and metaphyseal changes in children causes by administration of bisphosphonates. Radiology 1992, 184:249–254.

    Google Scholar 

  38. Brumsen C, Hamdy NA, Papopoulos SE: Long-term effects of bisphosphonates on the growing skeleton: studies of young patients with severe osteoporosis. Medicine (Baltimore) 1997, 76:266–283.

    Article  CAS  Google Scholar 

  39. Glorieux FH, Bishop NJ, Plotkin H, et al.: Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998, 339:947–952. This open study showed the efficacy of pamidronate in the treatment of osteogenesis imperfecta.

    Article  PubMed  CAS  Google Scholar 

  40. Bianchi ML, Cimaz R, Bardare M, et al.: Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children. Arthritis Rheum 2000, 43:1960–1966. This multicenter study has shown the efficacy of oral alendronate in improving bone mass in children and adolescents with connective tissue diseases. The drug was tolerated during the 1-year trial.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cimaz, R., Biggioggero, M. Osteoporosis. Curr Rheumatol Rep 3, 365–370 (2001). https://doi.org/10.1007/s11926-996-0005-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-996-0005-7

Keywords

Navigation